We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Parkinson's Disease Risk Indicators Found in Diverse Tissues

By LabMedica International staff writers
Posted on 18 Aug 2016
Tiny changes in DNA that have been linked to Parkinson's disease, the second most common neurodegenerative disorder after Alzheimer's, were found not only in brain cells, where they were expected, but also in liver, fat, immune and developmental cells.

Parkinson’s disease (PD) is the second most common neurodegenerative disorder, affecting about 1% of those over the age of 60 and classically, PD was considered a movement disorder with akinesia, rigidity, tremor and postural instability as the predominant motor features.

Scientists at the Van Andel Research Institute (Grand Rapids, MI, USA) and their collaborators investigated single-nucleotide polymorphisms SNPS) which were integrated with comprehensive data from the Roadmap Epigenomics Mapping Consortium (REMC) for 77 tissues and cell types and 1000 genomes using FunciSNP software.

The team found 12 loci across several tissue types that were particularly enriched or full of SNPS indicating an increase in risk. More...
Only one locus was identified in the substantia nigra, the part of the brain where dopamine-producing neurons die. Other loci were found in liver, fat, immune and developmental cells. It is the first time this type of genome-wide analysis has been used to investigate Parkinson's disease.

Although much more work must be done to unravel exactly how these loci affect risk, there are interesting parallels between the team's findings and recent work done by others investigating Parkinson's. For example, three of the risk loci were found in immune cells, a promising finding as evidence suggests that Parkinson's may be linked to inflammation, the immune system's reaction to help fight off potential threats.

Patrik Brundin, MD, PhD, director of Center for Neurodegenerative Science and one of the study's authors, said, “Only a small percentage of Parkinson's cases are familial and have a clear and well-defined genetic inheritance. The remaining cases develop the disease seemingly at random. The emerging view is that Parkinson's is more of a syndrome, as a defined set of clinical symptoms and some shared features of brain pathology, with a diverse set of underlying causes. One surprising finding in our study is that only one gene locus was clearly linked to the brain while others were associated with tissues throughout the body. This supports the emerging theory that Parkinson's is a disorder that can be caused by disruptions in cellular processes in many locations, not just one. Furthermore, for the disease to develop in one person there has to be an unfortunate combination of a genetic predisposition and, as yet undefined, environmental insults.” The study was published on July 27, 2016, in the journal Scientific Reports.

Related Links:
Van Andel Research Institute


Gold Member
Hybrid Pipette
SWITCH
POC Helicobacter Pylori Test Kit
Hepy Urease Test
6 Part Hematology Analyzer with RET + IPF
Mispa HX 88
HBV DNA Test
GENERIC HBV VIRAL LOAD VER 2.0
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Immunology

view channel
Image: Whole-genome sequencing enables broader detection of DNA repair defects to guide PARP inhibitor cancer therapy (Photo courtesy of Illumina)

Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment

Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more

Pathology

view channel
Image: AI models combined with DOCI can classify thyroid cancer subtypes (Photo courtesy of T. Vasse et al., doi 10.1117/1.BIOS.3.1.015001)

AI-Powered Label-Free Optical Imaging Accurately Identifies Thyroid Cancer During Surgery

Thyroid cancer is the most common endocrine cancer, and its rising detection rates have increased the number of patients undergoing surgery. During tumor removal, surgeons often face uncertainty in distinguishing... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.