We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Rapid Genetic Test Developed for an Often Fatal Mitochondrial Disease

By LabMedica International staff writers
Posted on 19 Jul 2016
Print article
Image: Mitochondria. Researchers have inherited mutations in the TMEM126B gene that cause debilitating and often fatal disease from infancy, and have developed a rapid diagnostic test that has already identified 6 patients from 4 families (Image courtesy of Newcastle University).
Image: Mitochondria. Researchers have inherited mutations in the TMEM126B gene that cause debilitating and often fatal disease from infancy, and have developed a rapid diagnostic test that has already identified 6 patients from 4 families (Image courtesy of Newcastle University).
Researchers have discovered disease-causing inherited mutations in the TMEM126B gene and developed a test providing rapid diagnosis of related mitochondrial disorders. Defects in TMEM126B cause problems with energy generation in muscles, and can lead to muscular weakness, blindness, fatal heart failure, liver failure, learning disability, diabetes, and seizures. There is currently no cure and affected children often die in early infancy.

A team of medics and scientists at Wellcome Trust Centre for Mitochondrial Research, Newcastle University (Newcastle, Tyne & Wear, UK), together with international collaborators identified the mutations and used next generation sequencing (NGS) to develop the test, which provides a result within 2-3 days. Their research confirmed the identity of a mutation in TMEM126B that causes mitochondrial disease affecting Complex I, one of five complexes involved in energy production. TMEM126B normally makes a protein necessary for complex I assembly.

First author Charlotte Alston, PhD student, described the technique, which has already identified 6 patients from 4 families affected by this form of mitochondrial disease: “Identifying a fault in Complex I [...] combined with our custom gene capture and the latest sequencing technology means we can screen many more genes to diagnose this debilitating disease. It means families can get a rapid diagnosis within days rather than the weeks and months that testing can currently take. For families who are waiting on a genetic diagnosis before trying for another baby, or they may already be expecting their next child, time really is of the essence.”

Senior author Professor Rob Taylor said: “The diagnosis of mitochondrial disease is often a complicated and time consuming process. There are over 1,300 potential genes that can lead to disease and, as such, finding the genetic cause is sometimes like looking for a needle in a haystack.”

For a family with one child affected with this type of mitochondrial disease, there is a 25% chance of each further child being affected. Professor Taylor added: “There is sadly no cure for mitochondrial disease so rapid diagnosis means parents who are wanting to have further children can opt for prenatal testing to ensure future children are healthy and without risk of developing severe disease. It provides options for families at risk of an otherwise incurable disease.”

The study, by Alston CL et al, was published July 7, 2016, in the American Journal of Human Genetics.

Related Links:
Newcastle University
Wellcome Trust Centre for Mitochondrial Research

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Xylazine Immunoassay Test
Xylazine ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: A false color scanning election micrograph of lung cancer cells grown in culture (Photo courtesy of Anne Weston)

AI Tool Precisely Matches Cancer Drugs to Patients Using Information from Each Tumor Cell

Current strategies for matching cancer patients with specific treatments often depend on bulk sequencing of tumor DNA and RNA, which provides an average profile from all cells within a tumor sample.... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: Fingertip blood sample collection on the Babson Handwarmer (Photo courtesy of Babson Diagnostics)

Unique Hand-Warming Technology Supports High-Quality Fingertip Blood Sample Collection

Warming the hand is an effective way to facilitate blood collection from a fingertip, yet off-the-shelf solutions often do not fulfill laboratory requirements. Now, a unique hand-warming technology has... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.