We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Biochip Combines Graphene Electronics and DNA Strand Displacement for Detection of Polymorphism Mutations

By LabMedica International staff writers
Posted on 05 Jul 2016
A team of bioengineers has designed an electronic biochip with potential applications for personalized medicine that can detect DNA mutations caused by single nucleotide polymorphisms (SNPs) in real time.

SNPs, which are variations of a single nucleotide base, in a gene sequence are markers for a variety of human diseases. More...
Detection of SNPs with high specificity and sensitivity is essential for effective practical implementation of personalized medicine. However, current DNA sequencing, including SNP detection, primarily uses enzyme-based methods or fluorophore-labeled assays that are time-consuming, need laboratory-scale settings, and are expensive. Previously reported electrical charge-based SNP detectors have insufficient specificity and accuracy, limiting their effectiveness.

In an effort to improve the accuracy and specificity of SNP detection, investigators at the University of California, San Diego (USA) combined dynamic DNA nanotechnology with high resolution electronic sensing in the form of a double stranded DNA probe embedded onto a graphene field effect transistor (FET).

The detection method was based on the displacement of a weakly bound DNA double strand by one containing a specific SNP. The single mismatch was detected by measuring strand displacement-induced resistance (and hence current) change in the graphene transistor. Use of large double-helix DNA strands (up to 47 bases) improved the accuracy of SNP detection by minimizing false-positive results.

“A single stranded DNA probe does not provide this selectivity - even a DNA strand containing one mismatching nucleotide base can bind to the probe and generate false-positive results,” said senior author Dr. Ratnesh Lal, professor of bioengineering, mechanical engineering, and materials science at the University of California, San Diego. “We expected that with a longer probe, we can develop a reliable sequence-specific SNP detection chip. Indeed, we have achieved a high level of sensitivity and specificity with the technology we have developed.”

“We are at the forefront of developing a fast and inexpensive digital method to detect gene mutations at high resolution—on the scale of a single nucleotide change in a nucleic acid sequence,” said Dr. Lal.

The SNP biosensor probe was described in detail in the June 13, 2016, online edition of the journal Proceedings of the [U.S.] National Academy of Sciences.

Related Links:
University of California, San Diego



Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
3-Part Differential Hematology Analyzer
Swelab Alfa Plus Sampler
New
Rapid Test Reader
DIA5000
New
Gold Member
Serological Pipets
INTEGRA Serological Pipets
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








DIASOURCE (A Biovendor Company)

Channels

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: A simple blood test could replace surgical biopsies for early detecion of heart transplant rejection (Photo courtesy of Shutterstock)

Blood Test Detects Organ Rejection in Heart Transplant Patients

Following a heart transplant, patients are required to undergo surgical biopsies so that physicians can assess the possibility of organ rejection. Rejection happens when the recipient’s immune system identifies... Read more

Pathology

view channel
Image: Pancreatic cancer diagnosis (Photo courtesy of World Journal of Gastroenterology)

AI-Driven Preliminary Testing for Pancreatic Cancer Enhances Prognosis

Pancreatic cancer poses a major global health threat due to its high mortality rate, with 467,409 deaths and 510,992 new cases reported worldwide in 2022. Often referred to as the "king" of all cancers,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.