We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Illumina

Illumina develops, manufactures and markets integrated systems for the analysis of genetic variations and biological ... read more Featured Products: More products

Download Mobile App




Events

10 Feb 2026 - 13 Feb 2026
17 Apr 2026 - 21 Apr 2026

Improved “Liquid Biopsy” Technique Enhances Tumor DNA Detection

By LabMedica International staff writers
Posted on 10 Apr 2016
An improved method has been devised to significantly increase the sensitivity of a technique to identify and sequence DNA from cancer cells circulating in a person's blood. More...
The hope is that such "liquid biopsies" of easily obtained blood samples could one day replace the need to surgically obtain tumor tissue for examination.

The new approach works by identifying errors that occur when tumor DNA is captured from the blood and prepared for sequencing. Removing these errors from the sequencing results allows scientists to more accurately identify true cancer-associated mutations from even very small amounts of starting material.

Scientists at Stanford University School of Medicine (CA, USA) collected venous blood samples from cancer patients and healthy volunteers. DNA isolation, shearing of genomic DNA, preparation of precapture sequencing libraries, hybridization-based enrichment, and assessment of library quality and enrichment following hybridization were performed. Sequencing was performed using 2 × 100 or 2 × 150 paired-end reads with an eight-base indexing read on a MiSeq, NextSeq, or HiSeq 2000, 2500, or 4000 (Illumina, San Diego, CA, USA).

The team termed their new, two-pronged approach "integrated digital error suppression," or iDES. It builds upon a method called CAPP-Seq that was previously devised to capture very small amounts of tumor DNA from the blood by looking for a panel of mutations known to be associated with a particular cancer. With CAPP-Seq, the scientists were able to detect as few as one tumor DNA molecule in a sea of over 5,000 normal DNA fragments.

The investigators developed a way to tag circulating double-stranded DNA molecules in the blood with "bar codes" that uniquely mark each original molecule. Because the strands of an individual DNA molecule fit together like a zipper, it is possible to predict the sequence of one strand from the sequence of the other. The bar codes therefore allowed the team to match up the two strands and look for discrepancies. Additionally, their approach was designed to minimize the number of molecules that are lost during bar-coding and sample processing, which is particularly important when analyzing the tiny amounts of circulating DNA present in most cancer patients.

Using iDES increased CAPP-Seq's sensitivity for noninvasively identifying a tumor's mutations in the blood by about 15 times. Once telltale tumor-specific mutations have been identified, the augmented technique becomes even more precise, detecting as few as one or two tumor DNA sequences among as many as 400,000 non-tumor DNA fragments. The method enabled biopsy-free profiling of epidermal growth factor receptor (EGFR) kinase domain mutations with 92% sensitivity and greater than 99.99% specificity at the variant level, and with 90% sensitivity and 96% specificity at the patient level. In addition, the approach allowed monitoring of non-small-cell lung carcinoma (NSCLC) circulating tumor DNA (ctDNA) down to four in 105 cell-free DNA (cfDNA) molecules. The study was published on March 28, 2016, in Nature Biotechnology.

Related Links:

Stanford University School of Medicine
Illumina 



Gold Member
Collection and Transport System
PurSafe Plus®
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Gold Member
Hybrid Pipette
SWITCH
Hemodynamic System Monitor
OptoMonitor
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.