We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Immune-Related Gene Implicated in Chronic Candida Infection Risk

By LabMedica International staff writers
Posted on 26 Jun 2019
Print article
Image: A scanning electron photomicrograph of Candida albicans yeast cells (Photo courtesy of Science Photo Library).
Image: A scanning electron photomicrograph of Candida albicans yeast cells (Photo courtesy of Science Photo Library).
Candida vaginitis is a frequent clinical diagnosis with up to 8% of women experiencing recurrent vulvovaginal candidiasis (RVVC) globally. RVVC is characterized by at least three episodes per year.

Although Candida often turns up as a harmless, commensal organism in healthy individuals, the fungus can prompt serious, systemic infections in immunocompromised individuals and contributes to even more common non-invasive mucosal infections. In particular a significant proportion of women go through several vulvovaginal Candida yeast infections annually, including many who lack non-genetic risk factors such as prolonged antibiotic or oral contraceptive use.

A large team of international scientists led by the Radboud University Medical Center (Nijmegen, Netherlands) carried out exome sequencing on women from two European cohorts: 80 cases and 77 controls from southern Europe and, from northern Europe, 75 affected women and 95 unaffected controls. The investigators used Agilent SureSelect enrichment kits, and Illumina instruments.

The team also used in vitro methods such as flow cytometry, enzyme-linked immunosorbent assays, or gene silencing to track cytokine responses to Candida in 73 of the control individuals, uncovering fungus-related shifts that were subsequently verified in 50 more participants. They fed those findings into a Candida-related cytokine quantitative trait locus (QTL) analysis, which was considered alongside exome sequences to identify SNPs, genes, and pathways contributing to frequent Candida infections.

The scientists identified genes and cellular processes that contribute to the pathogenesis of RVVC, including cellular morphogenesis and metabolism, and cellular adhesion. They further identified SIGLEC15, a lectin expressed by various immune cells that binds sialic acid–containing structures, as a candidate gene involved in RVVC susceptibility. Candida stimulation induced SIGLEC15 expression in human peripheral blood mononuclear cells (PBMCs) and a polymorphism in the SIGLEC15 gene that was associated with RVVC in the patient cohorts led to an altered cytokine profile after PBMC stimulation.

The same polymorphism led to an increase in IL1B and NLRP3 expression after Candida stimulation in HeLa cells in vitro. Last, SIGLEC15 expression was induced by Candida at the vaginal surface of mice, where in vivo silencing of SIGLEC15 led to an increase in the fungal burden. SIGLEC15 silencing was additionally accompanied by an increase in polymorphonuclear leukocytes during the course of infection. Identification of these pathways and cellular processes contributes to a better understanding of RVVC and may open new therapeutic avenues. The study was published on June 12, 2019, in the journal Science Translational Medicine.

Related Links:
Radboud University Medical Center

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Real-time PCR System
GentierX3 Series

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Microbiology

view channel
Image: The real-time multiplex PCR test is set to revolutionize early sepsis detection (Photo courtesy of Shutterstock)

1 Hour, Direct-From-Blood Multiplex PCR Test Identifies 95% of Sepsis-Causing Pathogens

Sepsis contributes to one in every three hospital deaths in the US, and globally, septic shock carries a mortality rate of 30-40%. Diagnosing sepsis early is challenging due to its non-specific symptoms... Read more

Pathology

view channel
Image: The QIAseq xHYB Mycobacterium tuberculosis Panel uses next-generation sequencing (Photo courtesy of 123RF)

New Mycobacterium Tuberculosis Panel to Support Real-Time Surveillance and Combat Antimicrobial Resistance

Tuberculosis (TB), the leading cause of death from an infectious disease globally, is a contagious bacterial infection that primarily spreads through the coughing of patients with active pulmonary TB.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.