We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Download Mobile App




Rapid Molecular Test Detects Macrolide Resistance

By LabMedica International staff writers
Posted on 13 Mar 2019
Print article
Image: The Twista device allows portable, two channel fluorometric detection of eight Recombinase Polymerase Amplification (RPA) reactions (Photo courtesy of TwistDx).
Image: The Twista device allows portable, two channel fluorometric detection of eight Recombinase Polymerase Amplification (RPA) reactions (Photo courtesy of TwistDx).
Emerging antimicrobial resistance is a significant threat to human health. However, methods for rapidly diagnosing antimicrobial resistance generally require multi-day culture-based assays. Current methods of assessing antimicrobial resistance are extremely slow, requiring days to weeks of culture time, and are also costly in terms of laboratory materials and technician effort.

The rise of antibiotic-resistant bacteria is a growing problem in the USA and the world. In the USA annually, more than two million people get infections that are resistant to antibiotics and at least 23,000 people die as a result. A new, highly sensitive rapid genetic test has been developed that can determine whether bacteria carries a gene that causes resistance to two common antibiotics used to treat strep throat and other respiratory illnesses.

Microbiologists at the American University (Washington, DC, USA) developed and tested a novel Recombinase Polymerase Amplification (RPA) assay for the detection of the Macrolide Efflux A (mef(A)) gene, an efflux pump rendering host bacteria resistant to 14- and 15-membered macrolide antibiotics (including erythromycin A and azithromycin). This gene can be found within Streptococcus pyogenes, the largest member of the Lancefield group A streptococci.

Primers and probe for the mef(A) RPA assay were designed following the instructions provided by TwistDx (Cambridge, UK). The team used purified DNA, a panel of bacteria cultures, and broth dilution antimicrobial resistance testing, and demonstrated extreme sensitivity and specificity of the RPA assay, and they confirm that positive results correctly predict antimicrobial resistance. The RPA assay uncovered an unexpected occurrence of the mef(A) gene within commensal Streptococcus salivarius strain, and subsequent laboratory testing confirmed that this strain has genuine antimicrobial resistance.

The team tested eight bacterial strains in total: S. pyogenes (2 strains), S. agalactiae, S. salivarius, S. pneumoniae (3 strains), and E. faecium. RPA confirmed the presence of mef(A) within all known positive strains and none of the known negatives. Megan M. Nelson, MSc, the first author of the study, said, “Our rapid genetic test can help doctors better assign medication on site, and improve point-of-care diagnostics, potentially leading to better outcomes without having prescribed a patient a useless antibiotic. There's a lot of trial and error with antibiotic use, so this is trying to take out some of the error.” The study was published on February 12, 2019, in the journal BMC Infectious Diseases.

Related Links:
American University
TwistDx

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Pathology

view channel
Image: The QIAseq xHYB Mycobacterium tuberculosis Panel uses next-generation sequencing (Photo courtesy of 123RF)

New Mycobacterium Tuberculosis Panel to Support Real-Time Surveillance and Combat Antimicrobial Resistance

Tuberculosis (TB), the leading cause of death from an infectious disease globally, is a contagious bacterial infection that primarily spreads through the coughing of patients with active pulmonary TB.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.