We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Padlock Probe Assay Detects and Subtypes Seasonal Influenza

By LabMedica International staff writers
Posted on 24 Jan 2019
Influenza remains a constant threat worldwide, and it is estimated that it affects 5% to 15% of the global population each season, with an associated three to five million severe cases and up to 500,000 deaths.

Modern influenza diagnostics are dominated by nucleic acid tests, which have replaced virus isolation and immunoassays, owing to their high sensitivity and specificity, and short turnaround times. More...
Several commercial systems for influenza diagnostics are available, most of which are based on real-time polymerase chain reaction (RT-PCR).

Scientists at Stockholm University (Stockholm, Sweden) and their colleagues developed a multiplexed assay for the detection and subtyping of seasonal influenza based on padlock probes and rolling circle amplification. The team collected 65 patient nasopharyngeal samples during the season 2016 to 2017 as part of routine diagnostics for respiratory virus infections at Karolinska University Hospital (Stockholm, Sweden). Fifteen of these samples were used for assay development, and 50 samples were used for assay validation.

The assay simultaneously targets all eight genome segments of the four circulating influenza variants, A(H1N1), A(H3N2), B/Yamagata, and B/Victoria, and was combined with a prototype cartridge for inexpensive digital quantification. Characterized virus isolates and patient nasopharyngeal swabs were used for assay design and analytical validation. The diagnostic performance was assessed by blinded testing of 50 clinical samples analyzed in parallel with a commercial influenza assay, Simplexa Flu A/B & RSV Direct.

For primer and probe optimization reactions, rolling circle amplification products (RCPs) were quantified by amplified single-molecule detection (ASMD) using the dedicated instrument Aquila 400. The team reported that the assay had a detection limit of 18 viral RNA copies and achieved 100% analytical and clinical specificity for differential detection and subtyping of seasonal circulating influenza variants. The diagnostic sensitivity on the 50 clinical samples was 77.5% for detecting influenza and up to 73% for subtyping seasonal variants.

The authors concluded that they had developed a padlock probe assay combined with an inexpensive digital readout for the detection and subtyping of seasonal influenza strains A and B. The demonstrated high specificity and multiplexing capability, together with the digital quantification, established the assay as a promising diagnostic tool for seasonal influenza. The study was published in the December 2018 issue of the journal Clinical Chemistry.

Related Links:
Stockholm University
Karolinska University Hospital


New
Gold Member
Cardiovascular Risk Test
Metabolic Syndrome Array I & II
POC Helicobacter Pylori Test Kit
Hepy Urease Test
New
Autoimmune Liver Diseases Assay
Microblot-Array Liver Profile Kit
New
Automatic Hematology Analyzer
DH-800 Series
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The test could streamline clinical decision-making by identifying ideal candidates for immunotherapy upfront (Xiao, Y. et al. Cancer Biology & Medicine July 2025, 20250038)

Blood Test Predicts Immunotherapy Efficacy in Triple-Negative Breast Cancer

Triple-negative breast cancer (TNBC) is an aggressive subtype lacking targeted therapies, making immunotherapy a promising yet unpredictable option. Current biomarkers such as PD-L1 expression or tumor... Read more

Technology

view channel
Image: The sensor can help diagnose diabetes and prediabetes on-site in a few minutes using just a breath sample (Photo courtesy of Larry Cheng/Penn State)

Graphene-Based Sensor Uses Breath Sample to Identify Diabetes and Prediabetes in Minutes

About 37 million U.S. adults live with diabetes, and one in five is unaware of their condition. Diagnosing diabetes often requires blood draws or lab visits, which are costly and inconvenient.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.