We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




LAMP Malaria Assay Evaluated in Non-Endemic Setting

By LabMedica International staff writers
Posted on 02 Nov 2017
Print article
Image: The illumigene malaria DNA amplification assay (Photo courtesy of Meridian Bioscience).
Image: The illumigene malaria DNA amplification assay (Photo courtesy of Meridian Bioscience).
Imported malaria infections in non-endemic regions remain common due to increasing travel to endemic malaria areas and population movements. Yearly approximately 10,000 cases of imported malaria are reported, but the actual number may be as high as 30,000.

Light microscopy and antigen-based rapid diagnostic tests are the primary diagnostic tools for detecting malaria, although being labor-intensive and frequently challenged by lack of personnel’s experience and low levels of parasite density. The latter is especially important in non-endemic settings.

Scientists at Ghent University Hospital (Ghent, Belgium) assessed the diagnostic performance of a malaria assay compared to microscopy, rapid diagnostic test (RDT) and real-time polymerase chain reaction (PCR). A panel of 103 stored EDTA-anticoagulated venous whole blood diagnostic samples obtained from international travelers, collected from June 2015 to June 2016, and 12 external quality control (EQC) samples were analyzed.

The objective of this study was to assess the diagnostic performance of the illumigene malaria assay, which is a qualitative in vitro diagnostic loop-mediated isothermal amplification (LAMP) test for the direct detection of Plasmodium spp. DNA in human venous EDTA whole blood samples. The assay targets a region of the Plasmodium genome that is conserved across P. falciparum, P. vivax, P. ovale, P. malariae and P. knowlesi, which is a 214 bp sequence of the Plasmodium spp. mitochondrial DNA noncoding region. The assay does not distinguish between the different Plasmodium species.

The team reported that, the illumigene assay showed 100% agreement with the real-time PCR, RDT and microscopy yielding a sensitivity and specificity of 100%. Seven samples from patients recently treated for Plasmodium falciparum infection that were RDT positive and microscopy negative yielded positive test results. The performance of the illumigene assay equals that of microscopy combined with RDT in the prospective panel with three false negative RDT results and one false negative microscopy result. Excellent concordance with PCR was observed. The limit of detection of the assay approached 0.5 parasites/µL for both P. falciparum and P. vivax.

The authors concluded that in non-endemic regions where the diagnostic process for malaria infections is questioned by lack of experience and low levels of parasite densities, the illumigene assay can be of value. Due to its high sensitivity, the LAMP assay may be considered as primary diagnostic test. The study was published on October 17, 2017, in the Malaria Journal.

Related Links:
Ghent University Hospital

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
Plasma Control
Plasma Control Level 1

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Pathology

view channel
Image: The new method could reduce undiagnosed cancer cases in less-developed regions (Photo courtesy of 123RF)

New Method Offers Sustainable Approach to Universal Metabolic Cancer Diagnosis

Globally, more than one billion people suffer from a high rate of missed disease diagnosis, highlighting the urgent need for more precise and affordable diagnostic tools. Such tools are especially crucial... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.