We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Palm-Sized Device Quickly Detects Ebola Virus

By LabMedica International staff writers
Posted on 18 May 2016
The gold standard method for identifying the Ebola virus in a blood sample requires packaging samples in cooled containers and sending them to specialized laboratories, often far away from where patients live.

These laboratories use a method called reverse-transcription polymerase chain reaction, or RT-PCR, to check for the virus. More...
The prolonged testing process delays detection, treatment and real-time monitoring of viral loads in body fluids that can harbor the virus even after it is no longer detected in the blood.

Scientists at the Korea Institute of Science and Technology Europe (KIST, Saarbrücken, Germany) and their colleagues have designed and tested an instrument, which could simultaneously perform four RT-PCRs that included two controls and two patient blood samples. Conventional tests require several hours to more than a day for results to come in. The new process was completed in slightly over 30 minutes. The amount of blood required was 100 nL and could potentially come from just a finger prick.

The device was shown to concurrently perform four PCRs, one positive control with both Ebola and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) RNA and one negative control. The device successfully detected the Ebola ribonucleic acid (RNA). In addition to diagnosing the illness, the test also yielded information about how many RNA copies each sample contained. In addition to diagnosing the illness, the experts say that the tool could also potentially help health care workers track patients' viral loads in semen, breast milk and eye fluids after recovery.

A comparison of threshold cycles (CT) from the two samples provided relative quantification. The entire process, which consisted of reverse transcription, PCR amplification, and melting curve analysis (MCA), was conducted in less than 37 min. The next step will be integration with a sample preparation unit to form an integrated sample-to-answer system for point-of-care infectious disease diagnostics. The study was published on April 11, 2016, in the journal Analytical Chemistry.

Related Links:
Korea Institute of Science and Technology Europe



New
Gold Member
Collection and Transport System
PurSafe Plus®
Collection and Transport System
PurSafe Plus®
New
CBM Analyzer
Complete Blood Morphology (CBM) Analyzer
New
Homocysteine Quality Control
Liquichek Homocysteine Control
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New evidence shows viscoelastic testing can improve assessment of blood clotting during postpartum hemorrhage (Photo courtesy of 123RF)

Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage

Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.