We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Recent Mutations Responsible for Plague Bacteria's Virulence

By LabMedica International staff writers
Posted on 12 Jul 2015
A team of molecular microbiologists has found that acquisition of single protein early in its existence enabled the plague bacterium Yersinia pestis to invade lung tissue, but that it required later mutations of this gene to enable the organism to rapidly spread to the lymph nodes and cause the bubonic form of the disease.

Yersinia pestis, a Gram-negative bacterium that causes bubonic and pneumonic plague, is able to rapidly disseminate to other parts of its mammalian hosts. More...
Y. pestis expresses the enzyme plasminogen activator (Pla) on its surface, which has been suggested to play a role in bacterial dissemination.

Investigators at Northwestern University (Evanston, IL, USA) worked with ancestral strains of Y. pestis in mouse models. They found that the acquisition of a single gene encoding the protease Pla was sufficient for the most ancestral, deeply rooted strains of Y. pestis to cause pneumonic plague, indicating that Y. pestis was primed to infect the lungs at a very early stage in its evolution. However, at this stage the bacterium did not cause the fulminating form of pneumatic plague, nor could it disseminate to the lymph nodes to cause the bubonic form.

It became apparent that as Y. pestis further evolved, modern strains acquired a single amino-acid modification within Pla that optimized protease activity. While this modification was unnecessary to cause pneumonic plague, the substitution was instead needed to efficiently induce the invasive infection associated with bubonic plague.

"Our findings demonstrate how Y. pestis had the ability to cause a severe respiratory disease very early in its evolution," said senior author Dr. Wyndham Lathem, assistant professor of microbiology and immunology at Northwestern University. "This research helps us better understand how bacteria can adapt to new host environments to cause disease by acquiring small bits of DNA. Our data suggests that the insertion and then subsequent mutation of Pla allowed for new, rapidly evolving strains of disease. This information can show how new respiratory pathogens could emerge with only small genetic changes."

The study was published in the June 30, 2015, online edition of the journal Nature Communications.

Related Links:
Northwestern University



New
Gold Member
Quality Control Material
iPLEX Pro Exome QC Panel
3-Part Differential Hematology Analyzer
Swelab Alfa Plus Sampler
New
Modular Hemostasis Automation Solution
CN Track
New
PSA Assay
CanAg PSA EIA
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: A simple blood test could replace surgical biopsies for early detecion of heart transplant rejection (Photo courtesy of Shutterstock)

Blood Test Detects Organ Rejection in Heart Transplant Patients

Following a heart transplant, patients are required to undergo surgical biopsies so that physicians can assess the possibility of organ rejection. Rejection happens when the recipient’s immune system identifies... Read more

Pathology

view channel
These images illustrate how precision oncology Organ Chips recapitulate individual patients’ responses to chemotherapy (Photo courtesy of Wyss Institute at Harvard University)

Cancer Chip Accurately Predicts Patient-Specific Chemotherapy Response

Esophageal adenocarcinoma (EAC), one of the two primary types of esophageal cancer, ranks as the sixth leading cause of cancer-related deaths worldwide and currently lacks effective targeted therapies.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.