Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Real-Time PCR Detects Malaria in Children

By LabMedica International staff writers
Posted on 28 Jun 2012
Quantitative real-time polymerase chain reaction PCR (qPCR) on blood samples is more sensitive than thick film microscopy for malaria diagnosis. More...


The molecular method can be used to determine the parasitemia of African children infected with Plasmodium falciparum in both plasma and whole blood samples and has been compared with microscopic techniques.

Scientists at the University of Oxford (Headington, UK) working with an international team conducted a double-blind randomized placebo-controlled trial in Southern Mozambique from September 2005 to March 2009. Study participants were followed up until age 24 months. Blood slides were read to quantify parasitemia. Plasma samples were stored at -80 °C for three to four years before extraction of DNA. Dried bloodspots collected onto filter paper were stored for the same period at 4 °C with silica gel.

A total of 548 samples were analyzed by qPCR on DNA extracted from whole blood on filter paper (qPCR-blood) and plasma (qPCR-plasma). Of these, 143 (26%) were found to be P. falciparum positive by qPCR-blood, while the qPCR-plasma method detected 37 (7%) as positive. Agreement between both techniques was 78.1%. Parasite infection detected by microscopy showed greater agreement with detection by qPCR-plasma (96.85%) than did qPCR-blood (69.7%). However, qPCR-blood detected parasitemia in approximately 3.5 fold more samples than qPCR-plasma or thick film microscopy.

The authors concluded that qPCR using parasite DNA from whole blood is more sensitive to detect submicroscopic levels of parasitemia than using parasite DNA from plasma. However, the data demonstrated that the performance of qPCR on plasma samples is similar to the performance of microscopy, suggesting that qPCR on plasma can be used as a substitute to microscopy when performing retrospective studies with limited material and when blood smears are unavailable. This approach, together with developments in the use of loop-mediated isothermal amplification may assist in making molecular detection of malaria infection in the field more common. The study was published on June 15, 2012, in the Malaria Journal.

Related Links:
University of Oxford


Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
POC Helicobacter Pylori Test Kit
Hepy Urease Test
HBV DNA Test
GENERIC HBV VIRAL LOAD VER 2.0
Human Estradiol Assay
Human Estradiol CLIA Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: LiDia-SEQ aims to deliver near-patient NGS testing capabilities to hospitals, labs and clinics (Photo courtesy of DNAe)

World's First NGS-Based Diagnostic Platform Fully Automates Sample-To-Result Process Within Single Device

Rapid point-of-need diagnostics are of critical need, especially in the areas of infectious disease and cancer testing and monitoring. Now, a direct-from-specimen platform that performs genomic analysis... Read more

Hematology

view channel
Image: Residual leukemia cells may predict long-term survival in acute myeloid leukemia (Photo courtesy of Shutterstock)

MRD Tests Could Predict Survival in Leukemia Patients

Acute myeloid leukemia is an aggressive blood cancer that disrupts normal blood cell production and often relapses even after intensive treatment. Clinicians currently lack early, reliable markers to predict... Read more

Pathology

view channel
Image: The AI tool advances precision diagnostics by linking genetic mutations directly to disease types (Photo courtesy of Shutterstock)

AI Tool Simultaneously Identifies Genetic Mutations and Disease Type

Interpreting genetic test results remains a major challenge in modern medicine, particularly for rare and complex diseases. While existing tools can indicate whether a genetic mutation is harmful, they... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.