We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Groundbreaking CRISPR Screen Technology Rapidly Determines Disease Mechanism from Tissues

By LabMedica International staff writers
Posted on 21 May 2024
Print article
Image: A view of the brain with perturbation expression (Photo courtesy of Scripps Research)
Image: A view of the brain with perturbation expression (Photo courtesy of Scripps Research)

Thanks to over a decade of advancements in human genetics, scientists have compiled extensive lists of genetic variations linked to a wide array of human diseases. However, understanding how a gene contributes to disease is quite different from knowing how to treat the disease. Each risk gene can affect multiple cell types, and pinpointing how these cell types—and even individual cells—influence a gene and its role in disease progression is crucial for developing effective treatments. Now, a new CRISPR screen method allows for the rapid analysis of brain cell types associated with key developmental genes, providing insights into the genetic and cellular mechanisms underlying various neurological disorders at an unprecedented level.

Developed at Scripps Research (La Jolla, CA, USA), the new technique, called in vivo Perturb-seq, utilizes CRISPR-Cas9 technology combined with single-cell transcriptomic analysis as a readout to measure the effects of genomic alterations on individual cells. By employing CRISPR-Cas9, researchers can introduce specific changes into the genome during brain development and then analyze how these alterations impact individual cells, assessing thousands simultaneously. Previously, methods for inserting genetic perturbations into brain tissue were slow, often requiring days or weeks, which hampered the study of gene functions in neurodevelopment. However, this new screening method enables the rapid expression of perturbation agents in living cells within 48 hours, allowing researchers to quickly observe the roles of specific genes across different cell types within a very short time frame.

This method also offers unprecedented scalability—researchers were able to profile over 30,000 cells in a single experiment, a rate 10-20 times faster than traditional methods. In regions such as the cerebellum, they gathered tens of thousands of cells, reaching areas that previous labeling techniques could not. A pilot study using this innovative technology revealed that genetic perturbations produce varied effects across different cell types. This finding is significant as these affected cell types are often the targets for specific diseases or genetic variants. With this new technology, the team is poised to deepen their understanding of neuropsychiatric disorders and the relationship between specific cell types and brain regions. Going forward, they are keen on applying this technology to other cell types and organs to explore a broad spectrum of diseases in terms of tissue development and aging.

“We know that certain genetic variants in our genome can make us vulnerable or resilient towards different diseases, but which specific cell types are behind a disease? Which brain regions are susceptible to the genome mutations in those cells? These are the kinds of questions we're trying to answer,” said senior author Xin Jin, PhD, an assistant professor in the Department of Neuroscience at Scripps Research. “With this new technology, we want to build a more dynamic picture across brain region, across cell type, across the timing of disease development, and really start understanding how the disease happened—and how to design interventions.”

Related Links:
Scripps Research

Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
New
Autoimmune Disease Test
Anti-Centromere B ELISA Test
New
Hematology Analyzer
BH-6180

Print article

Channels

Microbiology

view channel
Image: The breakthrough system offers a faster way to diagnose bloodborne infections (Photo courtesy of Melio)

Culture-Free Platform Rapidly Identifies Blood Stream Infections

Neonatal sepsis is a life-threatening condition that results from bloodstream infections in newborns under 28 days old. Due to their immature immune systems, newborns are especially vulnerable to infections.... Read more

Technology

view channel
Image: Human tear film protein sampling methods (Photo courtesy of Clinical Proteomics. 2024 Mar 13;21:23. doi: 10.1186/s12014-024-09475-8)

New Lens Method Analyzes Tears for Early Disease Detection

Bodily fluids, including tears and saliva, carry proteins that are released from different parts of the body. The presence of specific proteins in these biofluids can be a sign of health issues.... Read more

Industry

view channel
Image: The game-changing immunoassay diagnostics platform delivers results from whole blood sample in 10 minutes (Photo courtesy of SpinChip)

bioMérieux Acquires Norwegian Immunoassay Start-Up SpinChip Diagnostics

bioMérieux (Marcy l’Étoile, France) has agreed to acquire SpinChip Diagnostics (Oslo, Norway), the developer of a game-changing immunoassay diagnostics platform. The small benchtop analyzer is well adapted... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.