We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Download Mobile App




Blood Test Could Predict Future Risk of Developing Leukemia

By LabMedica International staff writers
Posted on 06 Jul 2022
Print article
Image: A blood test could predict risk of developing leukemia in elderly years in advance (Photo courtesy of University of Glasgow)
Image: A blood test could predict risk of developing leukemia in elderly years in advance (Photo courtesy of University of Glasgow)

Leukemia is often the result of the disruption to the fine balance in blood cell production where new cells are manufactured and old blood cells die. Now, a blood test could predict risk of developing leukemia in the elderly population years in advance by identifying changes in blood cell production, according to new research. By identifying those most at risk it should be possible to provide preventive or early treatment in the future to improve patient outcomes, experts say.

As we age, mutations in blood stem cells can mean that the altered cells can have a growth benefit over other blood cells and outnumber them in what is referred to as fitness advantage. Researchers from the University of Edinburgh (Scotland, UK) and University of Glasgow (Scotland, UK) investigated how changes in fitness advantage that occur in blood production might provide clues to risk of developing leukemia depending on the type of mutation that occurs.

The researchers measured changes in the blood samples of 83 older individuals of the Lothian Birth Cohorts, taken every three years over a 12-year period. The Lothian Birth Cohorts 1921 and 1936 are longitudinal studies of brain, cognitive and general ageing which have followed up individuals every three years between the ages of 70 and 82 for the 1921 cohort and the ages of 79 to 92 for 1936. The team then combined these complex genomic data with a machine-learning algorithm to link different mutations with different growth speeds of blood stem cells carrying these mutations.

The researchers found that specific mutations give distinct fitness advantages to stem cells measured in people without leukemia - this can then be used to forecast how quickly the mutated cells will grow, which determines leukemia risk. Further research is needed to validate these results in a larger population due to the limited sample size in the current study, according to the researchers.

“In knowing an individual patient’s risk of developing leukemia, clinicians can schedule shorter gaps between appointments in those most likely to develop the disease and provide early treatment, which is more likely to be successful,” said Dr. Kristina Kirschner, co-lead author and Senior Lecturer at University of Glasgow’s Institute of Cancer Sciences.

“To understand leukemia risk, we need to consider the balance between the different cells involved in blood cell production and how this balance changes as we grow older. By linking genomic data with machine learning we have been able to predict the future behaviour of blood cells based on the mutations they develop,” added Dr. Linus Schumacher, co-lead author and Chancellor’s Fellow at the Centre for Regenerative Medicine of the University of Edinburgh.

Related Links:
University of Edinburgh 
University of Glasgow 

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Systemic Autoimmune Testing Assay
BioPlex 2200 ANA Screen with MDSS

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: AI analysis of DNA fragmentomes and protein biomarkers noninvasively detects ovarian cancer (Photo courtesy of Adobe Stock)

Blood-Based Machine Learning Assay Noninvasively Detects Ovarian Cancer

Ovarian cancer is one of the most common causes of cancer deaths among women and has a five-year survival rate of around 50%. The disease is particularly lethal because it often doesn't cause symptoms... Read more

Immunology

view channel
Image: The groundbreaking treatment approach has shown promise in hard-to-treat cancers (Photo courtesy of 123RF)

Genetic Testing Combined With Personalized Drug Screening On Tumor Samples to Revolutionize Cancer Treatment

Cancer treatment typically adheres to a standard of care—established, statistically validated regimens that are effective for the majority of patients. However, the disease’s inherent variability means... Read more

Pathology

view channel
Image: The device can serve as a sample pretreatment tool for cytological diagnosis of malignant effusions (Photo courtesy of Microsystems & Nanoengineering: Zhu, Z., Ren, H., Wu, D. et al.)

Microfluidic Device for Cancer Detection Precisely Separates Tumor Entities

Tumor cell clusters are increasingly recognized as crucial in cancer pathophysiology, with growing evidence of their increased resistance to treatment and higher metastatic potential compared to single tumor cells.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.