We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Werfen

Download Mobile App




Study Supports Body Area Sensory Networks for Diagnostic Monitoring

By LabMedica International staff writers
Posted on 26 Aug 2019
The first steps have been taken on the path leading to development of a body area sensor network, which is a collection of networked sensors that can be used to remotely monitor human physiological signals.

For its application in next-generation personalized healthcare systems, stretchable on-skin sensors have to be seamlessly meshed with rigid silicon readout circuits. More...
Toward this end, investigators at Stanford University (Palo Alto, CA, USA) devleoped a body area sensory network (a bodyNET) composed of chip-free and battery-free stretchable on-skin sensor tags that were wirelessly linked to flexible readout circuits attached to clothing. This design offered a conformal skin-mimicking interface by removing all direct contacts between rigid components and the human body. Thus, this design addressed the mechanical incompatibility issue between soft on-skin devices and rigid high-performance silicon electronics.

For communications between the skin sensors and the clothing-bound receivers, the investigators introduced an unconventional radiofrequency identification technology where the wireless sensors were deliberately detuned to increase the tolerance of strain-induced changes in electronic properties. Thus, the bodyNET comprised chip-free and battery-free stretchable on-skin sensor tags, which had been screen-printed with metallic ink, that were wirelessly linked to flexible readout circuits attached to textiles.

The investigators used this prototype bodyNET to simultaneously and continuously analyse an individual’s pulse, breath, and body movement.

Ultimately, it is intended that this technology evolve into a device that would be comfortable to wear and have no batteries or rigid circuits to prevent the body sensors from stretching and contracting with the skin in response to changes in the subject’s physiology.

"We think one day it will be possible to create a full-body skin-sensor array to collect physiological data without interfering with a person's normal behavior," said senior author Dr. Zhenan Bao, professor of chemical engineering at Stanford University.

The bodyNET concept was discussed in a paper published in the August 15, 2019, online edition of the journal Nature Electronics.

Related Links:
Stanford University


Gold Member
Collection and Transport System
PurSafe Plus®
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Laboratory Software
ArtelWare
Sperm Quality Analyis Kit
QwikCheck Beads Precision and Linearity Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Immunology

view channel
Image: The TmS computational biomarker analyzes tumor gene expression and microenvironment data to guide treatment decisions (Photo courtesy of MD Anderson Cancer Center)

New Biomarker Predicts Chemotherapy Response in Triple-Negative Breast Cancer

Triple-negative breast cancer is an aggressive form of breast cancer in which patients often show widely varying responses to chemotherapy. Predicting who will benefit from treatment remains challenging,... Read more

Pathology

view channel
Image: Sophie Paczesny, M.D., Ph.D and her team have made BIOPREVENT freely available for researchers and clinician to test and learn from (Photo courtesy of Cliff Rhodes)

AI Tool Uses Blood Biomarkers to Predict Transplant Complications Before Symptoms Appear

Stem cell and bone marrow transplants can be lifesaving, but serious complications may arise months after patients leave the hospital. One of the most dangerous is chronic graft-versus-host disease, in... Read more

Industry

view channel
Image: QuidelOrtho has entered into a strategic supply agreement with Lifotronic to expand its global immunoassay portfolio (Photo courtesy of QuidelOrtho)

QuidelOrtho Collaborates with Lifotronic to Expand Global Immunoassay Portfolio

QuidelOrtho (San Diego, CA, USA) has entered a long-term strategic supply agreement with Lifotronic Technology (Shenzhen, China) to expand its global immunoassay portfolio and accelerate customer access... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.