Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Lab-on-a-Chip Demonstrates Potential to Detect Isolated Cancer Cells

By LabMedica International staff writers
Posted on 27 May 2014
A lab-on-a-chip that combines nanotechnology with microfluidics and surface plasmonic resonance spectroscopy has the potential of detecting isolated cancer cells before they can begin to form tumors.

Investigators at the Institute of Photonic Sciences (Castelldefels, Spain) created a chip coated with minute channels lined with antibody-labeled gold nanoparticles. A drop of blood applied to the chip circulates through the microchannels and specific cancer markers in the serum bind to the antibody-labeled nanoparticles. Binding of cancer biomarker proteins trigger changes in the reflectivity of the gold nanoparticles that is detected by plasmonic resonance spectroscopy.

Plasmonic resonance is a phenomenon that occurs when light is reflected off thin metal films, which may be used to measure interaction of biomolecules on the surface. An electron charge density wave arises at the surface of the film when light is reflected at the film under specific conditions. A fraction of the light energy incident at a defined angle can interact with the delocalized electrons in the metal film (plasmon) thus reducing the reflected light intensity. The angle of incidence at which this occurs is influenced by the refractive index close to the backside of the metal film, to which target molecules are immobilized. If ligands in a mobile phase running along a flow cell bind to the surface molecules, the local refractive index changes in proportion to the mass being immobilized. This can be monitored in real time by detecting changes in the intensity of the reflected light.

The investigators tested a prototype chip that was able to carry out parallel, real-time inspection of 32 sensing sites distributed across eight independent microfluidic channels with very high reproducibility/repeatability. The chip was able to rapidly detect relevant cancer biomarkers (human alpha-feto-protein and prostate specific antigen) down to concentrations of 500 picograms per milliliter in a complex matrix consisting of 50% human serum.

Senior author Dr. Romain Quidant, leader of the nanophotonics group at the Institute of Photonic Sciences, said, "The most fascinating finding is that we are capable of detecting extremely low concentrations of these proteins in a matter of minutes, making this device an ultra-high sensitivity, state-of-the-art, powerful instrument that will benefit early detection and treatment monitoring of cancer."

A detailed description of the device was published in the April 14, 2014, online edition of the journal Nano Letters.

Related Links:

Institute of Photonic Sciences



Gold Member
Chagas Disease Test
CHAGAS Cassette
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Herpes Simplex Virus ELISA
HSV 2 IgG – ELISA
New
Total Thyroxine Assay
Total Thyroxine CLIA Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The ready-to-use DUB enzyme assay kits accelerate routine DUB activity assays without compromising data quality (Photo courtesy of Adobe Stock)

Sensitive and Specific DUB Enzyme Assay Kits Require Minimal Setup Without Substrate Preparation

Ubiquitination and deubiquitination are two important physiological processes in the ubiquitin-proteasome system, responsible for protein degradation in cells. Deubiquitinating (DUB) enzymes contain around... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.