We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




AI-Based Cancer Diagnosis System Eliminates Errors

By LabMedica International staff writers
Posted on 25 Apr 2018
The first-ever artificial intelligence (AI)-based digital pathology diagnostic system has been deployed in a live clinical setting, following a pilot period, in which the system identified isolated major errors in retrospective prostate core needle biopsies (PCNBs) that had been diagnosed as benign.

The Second Read (SR) system, developed by Ibex Medical Analytics (Tel Aviv, Israel), a developer of AI-powered cancer diagnostics, has been deployed at the pathology institute of Maccabi Healthcare Services, which is among the largest healthcare providers in Israel and is also the company’s strategic partner. More...
The lab is a centralized pathology institute that handles 160,000 histology accessions per year, out of which approximately 700 are PCNBs.

Ibex develops AI-driven clinical decision support tools that help pathologists deliver more efficient, metric-driven, objective and accurate diagnosis. The company combines AI, data science, image analysis and machine learning technologies and applies them to cancer diagnostics in digital pathology. The SR system is software that identifies various cell types and features within whole slide images of PCNBs, including grading of cancerous glands and other clinically significant features. Ibex's algorithm utilizes state-of-the-art AI and machine learning techniques, and has been trained on thousands of image samples taken from hundreds of PCNBs from multiple institutes.

"We are excited to be the first company to ever deploy an AI-based system in a clinically-active pathology lab, leveraging the enormous potential of AI to make a real impact on human lives. We are now putting our full focus on making this system commercially available," stated Joseph Mossel, CEO and Co-founder of Ibex Medical Analytics.

"The complexity of prostate cancer diagnosis, together with the considerable shortage of pathologists, makes a second read system like this extremely useful for diagnostic accuracy and safety," said Dr. Judith Sandbank, Head of the Maccabi pathology institute and Chief Medical Officer at Ibex Medical Analytics.

Related Links:
Ibex Medical Analytics


Gold Member
Quantitative POC Immunoassay Analyzer
EASY READER+
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Autoimmune Liver Diseases Assay
Microblot-Array Liver Profile Kit
Homocysteine Quality Control
Liquichek Homocysteine Control
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Immunology

view channel
Image: Whole-genome sequencing enables broader detection of DNA repair defects to guide PARP inhibitor cancer therapy (Photo courtesy of Illumina)

Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment

Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more

Pathology

view channel
Image: AI models combined with DOCI can classify thyroid cancer subtypes (Photo courtesy of T. Vasse et al., doi 10.1117/1.BIOS.3.1.015001)

AI-Powered Label-Free Optical Imaging Accurately Identifies Thyroid Cancer During Surgery

Thyroid cancer is the most common endocrine cancer, and its rising detection rates have increased the number of patients undergoing surgery. During tumor removal, surgeons often face uncertainty in distinguishing... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.