We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Histological Criteria Predicts Lymphoma Transformation in Bone Marrow Biopsies

By LabMedica International staff writers
Posted on 16 Feb 2022

Large cell transformation (LCT) of indolent B-cell lymphomas, such as follicular lymphoma (FL) and chronic lymphocytic leukemia (CLL), signals a worse prognosis, at which point aggressive chemotherapy is initiated. More...

Although LCT is relatively straightforward to diagnose in lymph nodes, a marrow biopsy is often obtained first given its ease of procedure, low cost, and low morbidity. Criteria for morphologic evaluation of lymphoma transformation are not established in bone marrow biopsies.

Pathologists at the Yale Medicine (New Haven, CT, USA) and their colleagues studied the accuracy and reproducibility of a trained convolutional neural network in identifying LCT, in light of promising machine learning tools that may introduce greater objectivity to morphologic analysis. They retrospectively identified patients who had a diagnosis of FL or CLL who had undergone bone marrow biopsy for the clinical question of LCT.

They scored morphologic criteria and correlated results with clinical disease progression. In addition, whole slide scans were annotated into patches to train convolutional neural networks to discriminate between small and large tumor cells and to predict the patient's probability of transformation. All FL and CLL cases were scanned at ×40 magnification using a high-resolution Aperio scanner the Aperio ScanScope CS, (Aperio Technologies, Vista, CA, USA) and annotated with the digital pathology analysis software QuPath to define areas of maturing trilineage hematopoiesis, small cell lymphoma, and large cell lymphoma.

The investigators reported that using morphologic examination, the proportion of large lymphoma cells (≥10% in FL and ≥30% in CLL), chromatin pattern, distinct nucleoli, and proliferation index were significantly correlated with LCT in FL and CLL. Compared to pathologist-derived estimates, machine-generated quantification demonstrated better reproducibility and stronger correlation with final outcome data. Of the four models considered, the end-to-end convolutional neural network (CNN)-based model obtained the best results, with an AUROC of 0.857. This was followed by the logistic regression model trained on surface area estimates extracted from QuPath annotations (AUROC, 0.851).

The authors concluded that their histologic findings may serve as indications of LCT in bone marrow biopsies. The pathologist-augmented with machine system appeared to be the most predictive, arguing for greater efforts to validate and implement these tools to further enhance physician practice. The study was published in the February 2022 issue of the journal Archives of Pathology and Laboratory Medicine.

Related Links:
Yale Medicine 
Aperio Technologies 


New
Gold Member
Thyroid-Stimulating Hormone Test
ULTRA-TSH
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Myocardial Infarction Test
Quidel Triage Cardio3 Panel
New
Chlamydia Pneumoniae Test
Chlamydia Pneumoniae (CP) Real Time PCR Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The POC device rapidly predicts neonatal respiratory disease at birth in the NICU (Photo courtesy of SIME Diagnostics)

AI-Powered Lung Maturity Test Identifies Newborns at Higher Risk of Respiratory Distress

Each year, approximately 300,000 babies in the United States are born between 32 and 36 weeks' gestation, according to national health data. This group is at an elevated risk for respiratory distress,... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Pathology

view channel
Image: This image shows a second-generation version of the device that can also measure cell morphology (Photo courtesy of MIT)

Rapid Cell Density Measurement Technique to Help Predict Immunotherapy Response

The density of a cell provides valuable insights into its condition. As cells go through processes such as proliferation, differentiation, or cell death, they may gain or lose water and other molecules,... Read more

Technology

view channel
Image: Scanning electron microscopy images showing 3D micro-printed Limacon-shaped whispering-gallery-mode microcavities with different amounts of deformation (Photo courtesy of A. Ping Zhang/PolyU)

Tiny Microlaser Sensors with Supercharged Biosensing Ability to Enable Early Disease Diagnosis

Optical whispering-gallery-mode microlaser sensors function by trapping light within tiny microcavities. When target molecules bind to the cavity, they induce subtle changes in the laser’s frequency, allowing... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.