We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

SYSMEX-EUROPA

Sysmex Europe designs and produces laboratory and hematology diagnostic solutions, including instruments, reagents, c... read more Featured Products: More products

Download Mobile App




Increased Mean Corpuscular Hemoglobin Concentration Scrutinized for Accuracy

By LabMedica International staff writers
Posted on 21 Dec 2016
In daily practice in hematology laboratories, spurious increased mean corpuscular hemoglobin concentration (MCHC) induces an analytical alarm and needs prompt corrective action to ensure delivery of the right results to the clinicians.

Elevated MCHC is a rare event in routine laboratory practice, but it must be managed properly. More...
In daily practice, the MCHC limit defined by a specific commercial analyzer is fixed at 365 g/L. Exceeding this value leads to a suspicious ‘flag’ and this ‘flag’ has to be considered in an accreditation context to assess the accuracy of reported parameters.

Hematologists at the Hôpital de la Conception (Marseille, France) measured and analyzed in parallel with blood smears from 128 unknown patients with MCHC greater than 365 g/L, all erythrocyte parameters including reticulocyte parameters, chemistry index and osmolality. Differences between optical parameters (RBC-O, HGB-O) and usual parameters (RBC, HGB) obtained by impedance and photometry were also reported.

The scientists used the Sysmex XN-10 RET automated hematology system (Sysmex Corporation, Kobe Japan) that has two different technologies for achieving a full erythrocyte analysis. Erythrocytes are counted using an impedance method with a hydrodynamic focusing system in a fixed volume at room temperature. When required, XN-10 RET can provide a second erythrocyte count (RBC-O) using fluorescence flow cytometry after stabilization and warming at 41 °C in the incubation chamber. RBC-O is a measured parameter, corresponding to total erythrocyte count, including reticulocyte counts, whereas HGB-O is a calculated parameter derived mainly from the RBC-O count and RBC hemoglobin content (RBC-He).

The team classified four groups from their observations: 22 with red blood cell (RBC) agglutination; 17 with optical interference; 18 with RBC disease and 71 others including unclassified and/or patients with hyposmolar plasma. The use of RBC-O and HGB-O permitted efficient correction of the abnormalities when RBC agglutination and/or optical interference were present in 36 of 39 patients. Reticulocyte parameters permitted to elaborate an RBC score that allowed a highly sensitive detection of RBC disease patients (17/18).

The authors concluded that in case of elevated MCHC, their study proves the capability of XN-10 RET optical parameters to provide solutions in the majority of cases, especially concerning RBC cold agglutination and optical interference. The calculated RBC score offers a highly useful tool for managing a blood smear and specifying patients with RBC disease. This original study allows optimization of the workflow in laboratories eliminating manual tasks, guiding biological interpretation in the case of elevated MCHC. The study was originally published online on August 27, 2016, in the International Journal of Laboratory Hematology.

Related Links:
Hôpital de la Conception
Sysmex

Gold Member
Pharmacogenetics Panel
VeriDose Core Panel v2.0
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Ultra-Low Temperature Freezer
iUF118-GX
New
Chlamydia Trachomatis Assay
Chlamydia Trachomatis IgG
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The GlycoLocate platform uses multi-omics and advanced computational biology algorithms to diagnose early-stage cancers (Photo courtesy of AOA Dx)

AI-Powered Blood Test Accurately Detects Ovarian Cancer

Ovarian cancer ranks as the fifth leading cause of cancer-related deaths in women, largely due to late-stage diagnoses. Although over 90% of women exhibit symptoms in Stage I, only 20% are diagnosed in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: The new algorithms can help predict which patients have undiagnosed cancer (Photo courtesy of Adobe Stock)

Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer

Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.