We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




Test Detects Protein Associated with Alzheimer’s and CTE

By LabMedica International staff writers
Posted on 09 Jan 2019
Print article
Image: The FLUOstar Omega is a multi-mode microplate reader and has six detection modes (Photo courtesy of BMG LabTech).
Image: The FLUOstar Omega is a multi-mode microplate reader and has six detection modes (Photo courtesy of BMG LabTech).
An ultrasensitive test has been developed that detects a corrupted protein associated with Alzheimer’s disease and chronic traumatic encephalopathy (CTE). This advance could lead to early diagnosis of these conditions and how they originate.

Alzheimer disease (AD) afflicts 5.7 million people in the USA alone and their care is estimated to cost USD 232 billion annually. Like other proteins involved in neurological diseases, tau protein clusters can seed themselves and contribute substantially to the disease processes of Alzheimer’s and CTE. The diagnostic test originally developed for prion diseases to detect abnormal clusters of tau protein.

A team of scientists collaborating with the Rocky Mountain Laboratories (NIAID, Hamilton, MT, USA) analyzed brain samples from 16 Alzheimer’s patients, two boxers with CTE, and numerous control cases involving other brain diseases. Tissue samples for neuropathological studies were obtained from representative brain regions. The following methods were used: Weigert’s hematoxylin–eosin, Woelcke–Heidenhain, Bodian, Gallyas, and thioflavin S. For immunohistochemistry, antibodies against tau, Aβ, glial fibrillary acidic protein (GFAP), prion protein, ubiquitin, and TAR DNA-binding protein-43 (TDP-43) were used.

To probe the molecular basis for AD’s tau filament propagation and to improve detection of tau aggregates as potential biomarkers, the team exploited the seeded polymerization growth mechanism of tau filaments to develop a highly selective and ultrasensitive cell-free tau seed amplification assay optimized for AD (AD real-time quaking-induced conversion or AD RT-QuIC). The reaction is based on the ability of AD tau aggregates to seed the formation of amyloid fibrils made of certain recombinant tau fragments and read on a BMG FLUOstar plate reader.

The investigators reported that AD RT-QuIC detected seeding activity in all AD brains at dilutions as extreme as 107–1010-fold, but was 102–106-fold less responsive when seeded with brain from most cases of other types of tauopathy with comparable loads of predominant three-repeat (3R) or four-repeat (4R) tau aggregates. The CTE brains had seed concentrations comparable to the weakest of the AD specimens, and higher than three of four specimens with 3R/4R primary age-related tauopathy. AD seeds shared properties with the tau filaments found in AD brains, as AD seeds were sarkosyl-insoluble, protease resistant, and reactive with tau antibodies. AD RT-QuIC detected as little as 16 fg of pure synthetic tau fibrils.

The authors concluded that the distinctive seeding activity exhibited by AD and CTE tau filaments compared to other types of tauopathies in these seeded polymerization reactions provides a mechanistic basis for their consistent propagation as specific conformers in patients with 3R/4R tau diseases. Importantly, AD RT-QuIC also provides rapid ultrasensitive quantitation of 3R/4R tau-seeding activity as a biomarker. The study was published on December 20, 2018, in the journal Acta Neuropathologica.

Related Links:
Rocky Mountain Laboratories

New
Gold Member
Human Chorionic Gonadotropin Test
hCG Quantitative - R012
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Silver Member
H-FABP Assay
Heart-Type Fatty Acid-Binding Protein Assay
New
FOB+Transferrin+Calprotectin+Lactoferrin Test
CerTest FOB+Transferrin+Calprotectin+Lactoferrin Combo Test

Print article

Channels

Molecular Diagnostics

view channel
Image: The advanced molecular test is designed to improve diagnosis of a genetic form of COPD (Photo courtesy of National Jewish Health)

Groundbreaking Molecular Diagnostic Test Accurately Diagnoses Major Genetic Cause of COPD

Chronic obstructive pulmonary disease (COPD) and Alpha-1 Antitrypsin Deficiency (AATD) are both conditions that can cause breathing difficulties, but they differ in their origins and inheritance.... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: The new algorithms can help predict which patients have undiagnosed cancer (Photo courtesy of Adobe Stock)

Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer

Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.