Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




A New Image for Cell Sorting Introduced

By LabMedica International staff writers
Posted on 10 May 2022

Methods that physically separate cells of interest on the basis of measurable characteristics have numerous uses in clinical studies and applications, including cellular therapies. More...

Cells can also be sorted on the basis of signals from extrinsic probes.

Fluorescence-activated cell sorting (FACS) is the most popular means of separating a population of cells into subsets according to the total amount of key biomarkers that are expressed by each cell. These biomarkers are typically detected with fluorochrome-labeled antibodies.

Flow cytometry specialists from Newcastle University (Newcastle upon Tyne, UK) and the Broad Institute (Cambridge, MA, USA) have reviewed the latest advances in the use of FACS. The prototype instrument for this new means of sorting is an adaptation of the BD FACSMelody cell sorter (BD Biosciences, San Jose, CA, USA), which is considered the workhorse of FACS.

The new method, called BD CellView Image Technology, combined ultrafast microscopy and image analysis with a flow cytometric cell sorter to unlock spatial phenotypes for high-throughput sorting applications. Although this prototype instrument has only a few fluorescence channels (complex FACS systems have many more), it sorts cells according to the spatial pattern of fluorescence within each cell. The system relies on fast fluorescence imaging that uses radiofrequency-tagged emission and specialized low-latency signal processing and sorting electronics, a clever approach that provides spatial information for each signal.

The sorter physically separated the cells that had nuclear expression of RelA after nine hours of run time at a sorting rate of 14 million cells per hour. The investigators could then identify specific loci, the ablation of which blocked the nuclear translocation of RelA. They did this by sequencing unique guide RNAs that served as barcodes in the affected cells Overall, it appears that this system can aptly sort cells on the basis of prespecified complex morphologic characteristics.

Image-based cell-sorting technologies have myriad applications. Bar-coded genetic reagents that are present in image-sorted cell populations can be sequenced, which permits powerful genomewide knockdown or overexpression screens. This application expands the number of phenotypes that are amenable to screens to identify genes that underlie disease-related cell phenotypes, a development that can uncover potential therapeutic targets.

Image-based cell sorting can be used to explore the relationship between the sorted, visible cell phenotypes and other characteristics. Cell subpopulations sorted according to morphologic characteristics might subsequently be analyzed for their genome, transcriptome, epigenome, proteome, or additional morphologic properties. In addition, sorted populations can be compared according to the response to perturbations such as drug treatments.

Sorting technologies require the classification of each cell in real time, and classifying cells with complex phenotypes requires machine learning. Therefore, whether cells with complex phenotypes might be successfully sorted remains to be seen. Nevertheless, together these advancements in the process point to a future in which precision cell subpopulations might be rapidly purified and put to good use. The study was published on May 5, 2022 in the journal The New England Journal of Medicine.

Related Links:
Newcastle University 
Broad Institute 
BD Biosciences 


New
Gold Member
Automatic Hematology Analyzer
DH-800 Series
Collection and Transport System
PurSafe Plus®
New
Autoimmune Liver Diseases Assay
Microblot-Array Liver Profile Kit
New
Automated Chemiluminescence Immunoassay Analyzer
MS-i3080
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: Left is the original cell image and right is same cell image zoomed in and rendered in the special imaging software (Photo courtesy of FIU)

Brain Inflammation Biomarker Detects Alzheimer’s Years Before Symptoms Appear

Alzheimer’s disease affects millions globally, but patients are often diagnosed only after memory loss and other symptoms appear, when brain damage is already extensive. Detecting the disease much earlier... Read more

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Pathology

view channel
Image: An adult fibrosarcoma case report has shown the importance of early diagnosis and targeted therapy (Photo courtesy of Sultana and Sailaja/Oncoscience)

Accurate Pathological Analysis Improves Treatment Outcomes for Adult Fibrosarcoma

Adult fibrosarcoma is a rare and highly aggressive malignancy that develops in connective tissue and often affects the limbs, trunk, or head and neck region. Diagnosis is complex because tumors can mimic... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.