We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App

Robotic Platform Enables More Accurate Diagnosis of Cancer Cells

By LabMedica International staff writers
Posted on 25 Oct 2023
Print article
Image: A tissue sample, for example a lymph node, is only 5–10 mm in size (Photo courtesy of ETH Zurich)
Image: A tissue sample, for example a lymph node, is only 5–10 mm in size (Photo courtesy of ETH Zurich)

For more than a century, the field of histology, which falls under pathology and focuses on changes in tissue, has relied on an old-school method. This involves slicing tissue samples into extremely thin sections—each about seven times thinner than a human hair—and then examining them for any abnormal changes under a microscope. The downside of this traditional technique is that it leads to misdiagnosis in about one out of every six people, often missing cancer cells. Now, scientists have integrated biomedical technology with mechanical engineering to create a robotic system that not only diagnoses cancer more precisely but also offers three-dimensional insights into the spatial arrangement of cells.

Researchers from ETH Zurich (Zurich, Switzerland) and the University of Zurich (Zurich, Switzerland) are working on this robotic platform designed to improve the accuracy of cancer diagnosis by rapidly quantifying tissue samples in their entirety. The procedure involves four stages. First, the tissue sample is automatically made transparent. Second, any unusual cells are quickly stained or colored. The third phase consists of generating a 3D image that maps out the cancer cells; the technology for this is already available. The last phase involves analyzing the tissue using 3D imaging software and training algorithms. This novel approach eliminates the need for labor-intensive preparation and slicing of tissue samples; instead, the entire tissue sample—like a lymph node—is preserved and fully examined. The 3D digital images showing the marked cells can be accessed online whenever needed.

Currently, the robot prototype is functional in the lab and can maneuver samples as required. However, it's not yet completely market-ready. While the team can provide preliminary services like automatically rendering sent-in tissue samples transparent and generating labeled 3D images swiftly, the software still needs fine-tuning. The researchers aim to commercialize this robotic system, offering research laboratories and healthcare facilities a dependable and effective tool that could revolutionize the way cancer diagnosis is conducted in the digital age.

Related Links:
ETH Zurich 
University of Zurich 

Platinum Supplier
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Gold Supplier
Parainfluenza Virus Test
POCT Fluorescent Immunoassay Analyzer
ECP Test
Eosinophil Cationic Protein ELISA-Kit

Print article


Clinical Chemistry

view channel
Image: A module with eight micro-devices, complete with microfluidic channels and drive motors (Photo courtesy of U.S Department of Energy)

Highly Sensitive pH Sensor to Aid Detection of Cancers and Vector-Borne Viruses

Understanding the acidity or alkalinity of substances through pH measurement is crucial in many fields, from environmental monitoring to healthcare product safety. In many cases, these measurements must... Read more

Molecular Diagnostics

view channel
Image: The PrismRA blood test helps target best treatments for patients with rheumatoid arthritis (Photo courtesy of Scipher Medicine)

Groundbreaking Rheumatoid Arthritis Blood Test Predicts Treatment Response

Rheumatoid arthritis (RA), an autoimmune disease affecting joints and other systems in the body, impacts millions globally. Typically, the initial biologic treatment involves anti-inflammatory drugs from... Read more


view channel
Image: The QScout hematology analyzer has received US FDA 510(k) clearance (Photo courtesy of Ad Astra Diagnostics)

First Rapid-Result Hematology Analyzer Reports Measures of Infection and Severity at POC

Sepsis, a critical medical condition that arises as an extreme response to infection, poses a significant health threat. It occurs when an infection triggers a widespread inflammatory response in the body.... Read more


view channel
Image: PointCheck is the world’s first device for non-invasive white cell monitoring (Photo courtesy of Leuko Labs)

World’s First Portable, Non-Invasive WBC Monitoring Device to Eliminate Need for Blood Draw

One of the toughest challenges for cancer patients undergoing chemotherapy is experiencing a low count of white blood cells, also known as neutropenia. These cells play a crucial role in warding off infections.... Read more


view channel
Image: Current testing methods for antibiotic susceptibility rely on growing bacterial colonies in the presence of antibiotics (Photo courtesy of 123RF)

Rapid Antimicrobial Susceptibility Test Returns Results within 30 Minutes

In 2019, antimicrobial resistance (AMR) was responsible for the deaths of approximately 1.3 million individuals. The conventional approach for testing antimicrobial susceptibility involves cultivating... Read more


view channel
Image: The acquisition significantly expands Medix Biochemica’s portfolio of IVD raw materials (Photo courtesy of ViroStat)

Medix Biochemica Acquires US-Based ViroStat to Expand Infectious Diseases Antibody Offering

Medix Biochemica (Espoo, Finland), a supplier of critical raw materials to the in vitro diagnostics (IVD) industry, has acquired ViroStat LLC (Portland, ME, USA), a provider of infectious disease antibodies... Read more
Copyright © 2000-2023 Globetech Media. All rights reserved.