We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Improved Microneedle Technology Speeds Up Extraction of Sample Interstitial Fluid for Disease Diagnosis

By LabMedica International staff writers
Posted on 19 Mar 2024

Interstitial fluid has many similarities with blood, and its secrets are still being uncovered. More...

A microneedle offers a minimally invasive method to sample this fluid directly under the skin. This tool allows for real-time and continuous monitoring of biomarkers circulating in the body. Despite their small size, just two to three times the width of a human hair and around a millimeter in length, microneedles can make a significant difference in early infection diagnosis and personal health monitoring. Now, researchers have developed improved microneedle technology that enhances the extraction of interstitial fluid by collecting more sample quantities in less time.

Sandia National Laboratories (Albuquerque, NM, USA) is leading the way in microneedle research through collaboration with different partners to enhance this technology. Sandia has achieved a breakthrough in interstitial extraction, moving from using multiple needle arrays to a single microneedle technique that collects enough fluid for analysis in just about 10 minutes. This method is not only quicker but also gathers larger fluid volumes. The microneedles, designed to bypass nerve endings by not penetrating too deeply, are hollow and have been optimized by modifying the needle holders' shape, which are 3D printed at Sandia’s Advanced Materials Laboratory.

This advancement could broaden microneedle applications significantly. For example, Sandia is exploring using microneedles to differentiate between bacterial and viral infections. This distinction could enable faster, more precise treatments. Additionally, Sandia is investigating the biomarkers present in interstitial fluid to see how they correlate with blood measurements. This research involves collecting interstitial fluid from volunteers using the new method, with the aim of developing devices for continuous health monitoring. Moreover, Sandia is also working on another project to develop microneedle sensors that detect electrolytes like sodium, potassium, and calcium. Continuous monitoring of these electrolytes could assist in managing cardiovascular functions, hydration levels, and electrolyte imbalances, offering benefits similar to a wearable glucose meter for various health conditions.

“When we started work in this field in 2011, our goal was to develop microneedles as a wearable sensor, as an alternate to blood samples,” said Ronen Polsky, who has led Sandia’s work in microneedles. “People wear continuous glucose monitors for blood sugar measurements. We want to expand this to a whole range of other conditions to take advantage of this minimally invasive sampling using microneedles.”

Related Links:
Sandia National Laboratories


Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
3-Part Differential Hematology Analyzer
Swelab Alfa Plus Sampler
New
Uric Acid Meter
PA-16
New
Urine Drug Test
Instant-view® Phencyclidine Urine Drug Test
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The LEX VELO system aims to redefine point-of-care testing (Photo courtesy of LEX Diagnostics)

POC System Delivers Lab-Quality PCR Results Directly from Swab Sample in Minutes

Medical and laboratory staff in primary care settings are multi-skilled and routinely multitask to deliver care with the speed and convenience expected of modern medicine. This places a strong requirement... Read more

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: The tip optofluidic immunoassay platform enables rapid, multiplexed antibody profiling using only 1 μL of fingertip blood (Photo courtesy of hLife, DOI:10.1016/j.hlife.2025.04.005)

POC Diagnostic Platform Performs Immune Analysis Using One Drop of Fingertip Blood

As new COVID-19 variants continue to emerge and individuals accumulate complex histories of vaccination and infection, there is an urgent need for diagnostic tools that can quickly and accurately assess... Read more

Technology

view channel
Image: The machine learning-based method delivers near-perfect survival estimates for PAC patients (Photo courtesy of Shutterstock)

AI Method Predicts Overall Survival Rate of Prostate Cancer Patients

Prostate adenocarcinoma (PAC) accounts for 99% of prostate cancer diagnoses and is the second most common cancer in men globally after skin cancer. With more than 3.3 million men in the United States diagnosed... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.