We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




AI-Driven Deep-Tissue Imaging System Enables Visualization of Inner Workings of Cells and Tissues

By LabMedica International staff writers
Posted on 11 Dec 2023
Print article
Image: A novel AI engine can control and drive single-molecule microscopy (Photo courtesy of 123RF)
Image: A novel AI engine can control and drive single-molecule microscopy (Photo courtesy of 123RF)

Optical microscopy, a fundamental tool for visualizing cells and tissues, reaches its limits at the diffraction threshold, beyond which finer cellular and tissue features remain unresolved. This limitation affects traditional light microscopes commonly found in educational and medical settings, hindering their ability to clearly visualize minuscule entities like viruses, bacteria, and intricate internal cell structures. However, the advent of single-molecule localization microscopy has shattered this barrier, enhancing light-based observation resolution by 10 to 100 times. Now, the integration of artificial intelligence (AI) into these advanced "super-resolution" imaging systems is enabling scientists to observe the inner workings of cells and tissues without any limitations.

AI's increasing integration into various fields has led to significant advances in deep-tissue imaging technology, one of the most thrilling developments in modern science. This progress allows for deeper and more detailed insights into the most basic biological processes, illuminating aspects of human development and various diseases. A notable application of AI is now being seen in the biomedical field, where it is employed to control and enhance the capabilities of single-molecule microscopy. This innovation has led to groundbreaking possibilities in nanoscale optical imaging, enabling detailed visualization of the brain's 3D ultrastructure and amyloid beta fibrils, both in healthy and diseased states, offering potential insights into conditions like autism and Alzheimer’s disease.

The latest breakthrough achieved in this area through a multi-lab collaboration that included investigators from Purdue University (Lafayette, IN, USA) involves the development of deep-learning-driven adaptive optics within imaging systems. Researchers have created a mechanism that uses AI to monitor single-molecule emission images, assess the complex distortions caused by tissue, and autonomously adjust a sophisticated 140-element mirror device in real-time to correct and stabilize these distortions. This advancement has enabled deep-tissue, super-resolution imaging through specimens as thick as 250 μm, a significant improvement from previous capabilities. With a resolution of 20-70 nm, this technology has successfully delineated the ultrastructure of dendritic spines and amyloid beta fibrils in the brain, marking a significant step forward in the field.

“Imaging through tissues is challenging, due to the distortion and blurring, called aberration, caused by the highly packed extracellular and intracellular constituents. In our imaging systems, which detect individual biomolecules in the three-dimensional tissue space with a precision down to a few nanometers, aberration is the disabling factor for visualizing molecular tissue architecture at its full definition,” said Fang Huang, whose research team built the novel AI engine.

“This technology arrived at a unique moment,” said Landreth, whose lab focuses on the biological basis of Alzheimer’s disease and how genetic risk factors influence disease pathogenesis,” added Gary Landreth, the Martin Professor of Alzheimer’s Research at the Indiana University School of Medicine. “With the recent validation of therapeutic targeting of amyloid and preservation of cognitive function for Alzheimer’s disease, our AI-driven, deep-tissue imaging system is positioned to advance the understanding of AD and evaluate potential therapeutics. This is a particular exciting time given the recent FDA approval of new AD drugs.”

Related Links:
Purdue University

Gold Member
Turnkey Packaging Solution
HLX
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
New
Bordetella Pertussis ELISA
NovaLisa Bordetella Pertussis IgA
New
Dengue Test
Lab Rapid Dengue NS1

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The discovery of a new blood group has solved a 50- year-old mystery (Photo courtesy of 123RF)

Newly Discovered Blood Group System to Help Identify and Treat Rare Patients

The AnWj blood group antigen, a surface marker discovered in 1972, has remained a mystery regarding its genetic origin—until now. The most common cause of being AnWj-negative is linked to hematological... Read more

Microbiology

view channel
Image: The Accelerate Arc System has been granted US FDA 510(k) clearance (Photo courtesy of Accelerate Diagnostics)

Automated Positive Blood Culture Sample Preparation Platform Designed to Fight Against Sepsis and AMR

Delayed administration of antibiotics to patients with bloodstream infections significantly increases the risk of morbidity and mortality. For optimal therapeutic outcomes, it is crucial to rapidly identify... Read more

Industry

view channel
Image: Last year, Seegene and Werfen has entered into a collaboration on the OneSystem business to develop syndromic qPCR assays (Photo courtesy of Seegene)

Seegene and Werfen Finalize Partnership Agreement on Technology-Sharing Initiative

Seegene (Seoul, South Korea), a leading PCR molecular diagnostics company, and Werfen (Barcelona, Spain), a global diagnostics specialist, have finalized a partnership agreement as part of a technology-sharing... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.