We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




AI-Driven Deep-Tissue Imaging System Enables Visualization of Inner Workings of Cells and Tissues

By LabMedica International staff writers
Posted on 11 Dec 2023
Print article
Image: A novel AI engine can control and drive single-molecule microscopy (Photo courtesy of 123RF)
Image: A novel AI engine can control and drive single-molecule microscopy (Photo courtesy of 123RF)

Optical microscopy, a fundamental tool for visualizing cells and tissues, reaches its limits at the diffraction threshold, beyond which finer cellular and tissue features remain unresolved. This limitation affects traditional light microscopes commonly found in educational and medical settings, hindering their ability to clearly visualize minuscule entities like viruses, bacteria, and intricate internal cell structures. However, the advent of single-molecule localization microscopy has shattered this barrier, enhancing light-based observation resolution by 10 to 100 times. Now, the integration of artificial intelligence (AI) into these advanced "super-resolution" imaging systems is enabling scientists to observe the inner workings of cells and tissues without any limitations.

AI's increasing integration into various fields has led to significant advances in deep-tissue imaging technology, one of the most thrilling developments in modern science. This progress allows for deeper and more detailed insights into the most basic biological processes, illuminating aspects of human development and various diseases. A notable application of AI is now being seen in the biomedical field, where it is employed to control and enhance the capabilities of single-molecule microscopy. This innovation has led to groundbreaking possibilities in nanoscale optical imaging, enabling detailed visualization of the brain's 3D ultrastructure and amyloid beta fibrils, both in healthy and diseased states, offering potential insights into conditions like autism and Alzheimer’s disease.

The latest breakthrough achieved in this area through a multi-lab collaboration that included investigators from Purdue University (Lafayette, IN, USA) involves the development of deep-learning-driven adaptive optics within imaging systems. Researchers have created a mechanism that uses AI to monitor single-molecule emission images, assess the complex distortions caused by tissue, and autonomously adjust a sophisticated 140-element mirror device in real-time to correct and stabilize these distortions. This advancement has enabled deep-tissue, super-resolution imaging through specimens as thick as 250 μm, a significant improvement from previous capabilities. With a resolution of 20-70 nm, this technology has successfully delineated the ultrastructure of dendritic spines and amyloid beta fibrils in the brain, marking a significant step forward in the field.

“Imaging through tissues is challenging, due to the distortion and blurring, called aberration, caused by the highly packed extracellular and intracellular constituents. In our imaging systems, which detect individual biomolecules in the three-dimensional tissue space with a precision down to a few nanometers, aberration is the disabling factor for visualizing molecular tissue architecture at its full definition,” said Fang Huang, whose research team built the novel AI engine.

“This technology arrived at a unique moment,” said Landreth, whose lab focuses on the biological basis of Alzheimer’s disease and how genetic risk factors influence disease pathogenesis,” added Gary Landreth, the Martin Professor of Alzheimer’s Research at the Indiana University School of Medicine. “With the recent validation of therapeutic targeting of amyloid and preservation of cognitive function for Alzheimer’s disease, our AI-driven, deep-tissue imaging system is positioned to advance the understanding of AD and evaluate potential therapeutics. This is a particular exciting time given the recent FDA approval of new AD drugs.”

Related Links:
Purdue University

New
Platinum Member
Flu SARS-CoV-2 Combo Test
OSOM® Flu SARS-CoV-2 Combo Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
Dengue Virus Test
LINEAR Dengue-CHIK

Print article
77 ELEKTRONIKA

Channels

Clinical Chemistry

view channel
Image: PhD student and first author Tarek Eissa has analyzed thousands of molecular fingerprints (Photo courtesy of Thorsten Naeser / MPQ / Attoworld)

Screening Tool Detects Multiple Health Conditions from Single Blood Drop

Infrared spectroscopy, a method using infrared light to study the molecular composition of substances, has been a foundational tool in chemistry for decades, functioning similarly to a molecular fingerprinting... Read more

Molecular Diagnostics

view channel
Image: Researchers have found the first evidence of testing for the alpha-synuclein protein in blood samples via seed amplification assay (Photo courtesy of Shutterstock)

Blood Test to Detect Alpha-Synuclein Protein Could Revolutionize Parkinson's Disease Diagnostics

Currently, Parkinson's disease (PD) is identified through clinical diagnosis, typically at a later stage in the disease's progression. There is a pressing need for an objective and quantifiable biomarker... Read more

Hematology

view channel
Image: The Truvian diagnostic platform combines clinical chemistry, immunoassay and hematology testing in a single run (Photo courtesy of Truvian Health)

Automated Benchtop System to Bring Blood Testing To Anyone, Anywhere

Almost all medical decisions are dependent upon laboratory test results, which are essential for disease prevention and the management of chronic illnesses. However, routine blood testing remains limited worldwide.... Read more

Immunology

view channel
Image: The blood test measures lymphocytes  to guide the use of multiple myeloma immunotherapy (Photo courtesy of 123RF)

Simple Blood Test Identifies Multiple Myeloma Patients Likely to Benefit from CAR-T Immunotherapy

Multiple myeloma, a type of blood cancer originating from plasma cells in the bone marrow, sees almost all patients experiencing a relapse at some stage. This means that the cancer returns even after initially... Read more

Microbiology

view channel
Image: Ultra-Rapid Antimicrobial Susceptibility Testing (uRAST) revolutionizing traditional antibiotic susceptibility testing (Photo courtesy of Seoul National University)

Ultra-Rapid Culture-Free Sepsis Test Reduces Testing Time from Days to Hours

Sepsis, a critical emergency condition, results from an overactive inflammatory response to pathogens like bacteria or fungi in the blood, leading to organ damage and the possibility of sudden death.... Read more

Industry

view channel
Image: Beckman Coulter will utilize the ALZpath pTau217 antibody to detect key biomarker for Alzheimer\'s disease on its DxI 9000 immunoassay analyzer (Photo courtesy of Beckman Coulter)

Beckman Coulter Licenses Alzpath's Proprietary P-tau 217 Antibody to Develop Alzheimer's Blood Test

Cognitive assessments have traditionally been the primary method for diagnosing Alzheimer’s disease, but this approach has its limitations as symptoms become apparent only after significant brain changes... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.