We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
LGC Clinical Diagnostics

EUROIMMUN AG

Produces reagents for medical laboratory diagnostics, including test systems for the determination of various antibod... read more Featured Products: More products

Download Mobile App




Events

ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.

Automated Microscope Classifies IIF Patterns in Autoimmune Dermatoses

By LabMedica International staff writers
Posted on 02 May 2023
Print article
Image: Exemplary images of IIF on esophagus and salt-split skin (Photo courtesy of EUROIMMUN)
Image: Exemplary images of IIF on esophagus and salt-split skin (Photo courtesy of EUROIMMUN)

Autoimmune bullous dermatoses (AIBD) are a diverse group of autoantibody-driven conditions characterized by blistering and erosion of the skin and mucous membranes, including pemphigus diseases, pemphigoid diseases, and dermatitis herpetiformis. Differentiating between disease sub-types is essential for making treatment decisions. Indirect immunofluorescence (IIF) microscopy using tissue sections of the esophagus and salt-split skin is one of the most sensitive screening methods for initially differentiating AIBD. IIF on esophagus identifies autoantibodies against epithelial and endomysial antigens, while IIF on salt-split skin differentiates autoantibodies against the basement membrane zone. However, interpreting the complex IIF patterns can be challenging and is not well standardized.

In a joint study, scientists at EUROIMMUN (Lübeck, Germany) and the University of Lübeck (Lübeck, Germany) have developed and assessed a computer-aided system for classifying IIF patterns on esophagus and salt-split skin samples. The scientists created the training datasets by incubating biochip slides containing millimeter-sized tissue sections with various dilutions of patient serum samples and controls. Subsequently, the team used the EUROPattern Microscope 1.5 to acquire images. The results of the computer-aided evaluation were compared with findings from manual evaluations by experienced IIF technicians.

Automated IIF evaluation on esophagus and salt-split skin presents a challenge, as the small structures necessary for classification are only present in certain areas of the tissue substrates. Standard deep networks are not suitable for processing these images due to computer memory limitations and the number of available training images. Consequently, the researchers employed segmentation to focus the classification networks on the essential regions. The developed algorithms demonstrated high accuracy for pattern classification on esophagus and salt-split skin, with over 95% agreement with visual reading results. The positive predictive agreement was above 97% for all positive IF patterns on both tissue substrates, while the negative predictive agreement was at least 95% for all patterns.

The researchers concluded that deep networks can be adapted for evaluating complex tissue substrates by incorporating the segmentation of relevant regions into the prediction process. These classifiers offer an excellent enhancement to AIBD screening methods and can reduce the workload for professionals when interpreting tissue sections in IIF testing.

Related Links:
EUROIMMUN 
University of Lübeck 

Flocked Swab
HydraFlock and PurFlock Ultra
Gold Supplier
Automated, Random Access Chemistry Analyzer
LIDA 300
New
C-Reactive Protein Test
STANDARD F hs-CRP FIA
New
HLA-B27 Real Time PCR Test
RIDA GENE HLA-B27

Print article

Channels

Clinical Chem.

view channel
Image: Electrochemical cells etched by laser on wooden tongue depressor measure glucose and nitrite in saliva (Photo courtesy of Analytical Chemistry)

Biosensor-Fabricated Wooden Tongue Depressor Measures Glucose and Nitrite in Saliva

Physicians often use tongue depressors to examine a patient's mouth and throat. However, it is hard to imagine that this simple wooden tool could actively assess a patient's health. This idea has led to... Read more

Molecular Diagnostics

view channel
Image: A portable smartphone-based POC device for use with EXTRA-CRISPR method for cancer diagnostics (Photo courtesy of UF Health)

CRISPR-Powered Method for Non-Invasive Blood Tests to Help Diagnose Early Stage Cancer

MicroRNAs, tiny RNA molecules that regulate gene expression, have been identified as potential cancer biomarkers in human fluids like blood. Extracellular vesicles, tiny particles actively discharged by... Read more

Hematology

view channel
Image: The Atellica HEMA 570 and 580 hematology analyzers remove workflow barriers (Photo courtesy of Siemens)

Next-Gen Hematology Analyzers Eliminate Workflow Roadblocks and Achieve Fast Throughput

Hematology testing is a critical aspect of patient care, utilized to establish a patient's health baseline, track treatment progress, or guide timely modifications to care. However, increasing constraints... Read more

Immunology

view channel
Image: Newly observed anti-FSP antibodies have also been found to predict immune-related adverse events (Photo courtesy of Calviri)

First Blood-Based Biomarkers Test to Predict Treatment Response in Cancer Patients

Every year worldwide, lung cancer afflicts over two million individuals and almost the same number of people succumb to the disease. This malignancy leads the charts in cancer-related mortalities, with... Read more

Microbiology

view channel
Image: The rapid MTB strip test for tuberculosis can identify TB patients within two hours (Photo courtesy of Chulalongkorn University)

Rapid MTB Strip Test Detects Tuberculosis in Less Than an Hour without Special Tools

Tuberculosis (TB), a highly infectious disease, continues to pose significant challenges to public health worldwide. TB is caused by a bacterium known as "Mycobacterium tuberculosis," spreading through... Read more

Technology

view channel
Electronic biosensor uses DNA aptamers for detecting biomarkers in whole blood samples (Photo courtesy of Freepik)

Electronic Biosensor Detects Biomarkers in Whole Blood Samples without Addition of Reagents

The absence of robust, reliable, and user-friendly bioanalytical tools for early and timely diagnosis of cardiovascular diseases, particularly sudden cardiac arrest, leads to preventable deaths and imposes... Read more

Industry

view channel
Image: The global hemostasis diagnostics market is expected to reach USD 3.95 billion by 2025 (Photo courtesy of Freepik)

Global Hemostasis Diagnostics Market Driven by Increase in Invasive Surgical Procedures

Injury or surgery naturally creates bleeding in living beings, which must be stopped to prevent excessive blood loss. The human body implements a protective mechanism known as hemostasis to stop excessive bleeding.... Read more
Copyright © 2000-2023 Globetech Media. All rights reserved.