We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




AI-Powered Deep Learning Model Accurately Counts Cell Types in Whole Slide Images

By LabMedica International staff writers
Posted on 19 Apr 2023
Print article
Image: A deep learning framework estimating cell types in a whole slide digital pathology image (Photo courtesy of University of Eastern Finland)
Image: A deep learning framework estimating cell types in a whole slide digital pathology image (Photo courtesy of University of Eastern Finland)

Improved methods for counting cell types in pathology images using deep learning approaches are much needed. Current techniques based on segmentation and regression face challenges such as the necessity for precise pixel-level annotations, difficulties in handling overlapping nuclei or obscured regions, and insufficient information on individual cell type locations. Moreover, probabilistic models tend to yield uncertain predictions and can lead to overconfident predictions. Researchers have now developed an advanced deep learning model to predict and count various cell types in the tumor microenvironment, which is expected to enhance the accuracy and efficiency of cancer diagnostics and treatment planning.

Identifying the different cell types in the tumor microenvironment can offer valuable insights into the tumor's histology and underlying biology. Precise and reliable cell type counting is also crucial for research and clinical applications. In addition, cell counts can be used to study the distribution of different cell types in the tumor microenvironment and its correlation with patient outcomes. In clinical settings, cell counts can help monitor therapy response and track disease progression. Researchers from the University of Eastern Finland (Kuopio, Finland) have proposed a new evidential multi-task deep learning approach, called CT-EMT, to overcome the limitations of current methods for cell type counting in whole slide tumor images. This approach formulates cell type density estimation and cell type counting as regression tasks, and nuclei segmentation as a pixel-level classification task.

The proposed cell type segmentation and counting approach has outperformed state-of-the-art HoVer-Net and StarDist models, with relative improvements of 21% and 12% in terms of mean panoptic quality. The developed model can deliver persuasive interpretations of diverse cell types and can be applied to various computational pathology tasks, such as tumor grading, prognosis, and treatment planning. This work will pave the way for the creation of more accurate and robust digital pathology tools that can support pathologists and clinicians in diagnosing and treating cancer patients.

“The UEF Cancer AI research team aims to explore the potential of using deep learning technology in cancer and health data analysis,” said senior researcher Hamid Behravan of the University of Eastern Finland. “Our study will involve the development and evaluation of cutting-edge deep learning algorithms for analyzing cancer and various types of health-related data, including medical images, genomic data, and electronic health records. We believe that this approach has the potential to significantly improve the accuracy and efficiency of breast cancer diagnosis and treatment planning, as well as to facilitate the discovery of new insights and patterns in cancer data. We hope that our research will contribute to the advancement of precision medicine and the development of more effective and personalized approaches to breast cancer prevention and prognosis.”

Related Links:
University of Eastern Finland

New
Platinum Member
Flu SARS-CoV-2 Combo Test
OSOM® Flu SARS-CoV-2 Combo Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test

Print article

Channels

Clinical Chemistry

view channel
Image: The new ADLM guidance will help healthcare professionals navigate respiratory virus testing in a post-COVID world (Photo courtesy of 123RF)

New ADLM Guidance Provides Expert Recommendations on Clinical Testing For Respiratory Viral Infections

Respiratory tract infections, predominantly caused by viral pathogens, are a common reason for healthcare visits. Accurate and swift diagnosis of these infections is essential for optimal patient management.... Read more

Molecular Diagnostics

view channel
Image: The HelioLiver Dx test has met the coprimary and secondary study endpoints in the CLiMB trial (Photo courtesy of Helio Genomics)

Blood-Based Test Outperforms Ultrasound in Early Liver Cancer Detection

Patients with liver cirrhosis and chronic hepatitis B are at a higher risk for developing hepatocellular carcinoma (HCC), the most prevalent type of liver cancer. The American Association for the Study... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Microbiology

view channel
Image: The POC PCR test shortens time for STI test results (Photo courtesy of Visby Medical)

POC STI Test Shortens Time from ED Arrival to Test Results

In a 2024 sexually transmitted infections (STIs) surveillance report by the World Health Organization (WHO), over 2.5 million cases were recorded, alongside a rise in the inappropriate use of antibiotics... Read more

Industry

view channel
Image: For 46 years, Roche and Hitachi have collaborated to deliver innovative diagnostic solutions (Photo courtesy of Roche)

Roche and Hitachi High-Tech Extend 46-Year Partnership for Breakthroughs in Diagnostic Testing

Roche (Basel, Switzerland) and Hitachi High-Tech (Tokyo, Japan) have renewed their collaboration agreement, committing to a further 10 years of partnership. This extension brings together their long-standing... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.