We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




AI-Powered Deep Learning Model Accurately Counts Cell Types in Whole Slide Images

By LabMedica International staff writers
Posted on 19 Apr 2023

Improved methods for counting cell types in pathology images using deep learning approaches are much needed. More...

Current techniques based on segmentation and regression face challenges such as the necessity for precise pixel-level annotations, difficulties in handling overlapping nuclei or obscured regions, and insufficient information on individual cell type locations. Moreover, probabilistic models tend to yield uncertain predictions and can lead to overconfident predictions. Researchers have now developed an advanced deep learning model to predict and count various cell types in the tumor microenvironment, which is expected to enhance the accuracy and efficiency of cancer diagnostics and treatment planning.

Identifying the different cell types in the tumor microenvironment can offer valuable insights into the tumor's histology and underlying biology. Precise and reliable cell type counting is also crucial for research and clinical applications. In addition, cell counts can be used to study the distribution of different cell types in the tumor microenvironment and its correlation with patient outcomes. In clinical settings, cell counts can help monitor therapy response and track disease progression. Researchers from the University of Eastern Finland (Kuopio, Finland) have proposed a new evidential multi-task deep learning approach, called CT-EMT, to overcome the limitations of current methods for cell type counting in whole slide tumor images. This approach formulates cell type density estimation and cell type counting as regression tasks, and nuclei segmentation as a pixel-level classification task.

The proposed cell type segmentation and counting approach has outperformed state-of-the-art HoVer-Net and StarDist models, with relative improvements of 21% and 12% in terms of mean panoptic quality. The developed model can deliver persuasive interpretations of diverse cell types and can be applied to various computational pathology tasks, such as tumor grading, prognosis, and treatment planning. This work will pave the way for the creation of more accurate and robust digital pathology tools that can support pathologists and clinicians in diagnosing and treating cancer patients.

“The UEF Cancer AI research team aims to explore the potential of using deep learning technology in cancer and health data analysis,” said senior researcher Hamid Behravan of the University of Eastern Finland. “Our study will involve the development and evaluation of cutting-edge deep learning algorithms for analyzing cancer and various types of health-related data, including medical images, genomic data, and electronic health records. We believe that this approach has the potential to significantly improve the accuracy and efficiency of breast cancer diagnosis and treatment planning, as well as to facilitate the discovery of new insights and patterns in cancer data. We hope that our research will contribute to the advancement of precision medicine and the development of more effective and personalized approaches to breast cancer prevention and prognosis.”

Related Links:
University of Eastern Finland


Gold Member
Quality Control Material
iPLEX Pro Exome QC Panel
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Silver Member
PCR Plates
Diamond Shell PCR Plates
Alcohol Testing Device
Dräger Alcotest 7000
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: Immunofluorescence image of reactive astrocytes (red) in the area surrounding sEcad-high cancer cells (blue, center) (Photo courtesy of Debeb Laboratory)

Blood Test Identifies Inflammatory Breast Cancer Patients at Increased Risk of Brain Metastasis

Brain metastasis is a frequent and devastating complication in patients with inflammatory breast cancer, an aggressive subtype with limited treatment options. Despite its high incidence, the biological... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.