We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
MedicalSystem

Download Mobile App




Events

ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.

AI-Based Staining Technique as Accurate as Traditional Histopathology in Assessing Breast Cancer Biomarker

By LabMedica International staff writers
Posted on 28 Oct 2022
Print article
Image: Virtual HER2 staining of unlabeled breast tissue sections using deep learning (Photo courtesy of UCLA)
Image: Virtual HER2 staining of unlabeled breast tissue sections using deep learning (Photo courtesy of UCLA)

Breast cancer is one the leading causes of cancer death among women globally. Upon breast cancer diagnosis, the testing of HER2 – a protein that promotes cancer cell growth, is routinely carried out to help assess the cancer prognosis and make HER2-directed treatment plans. A standard HER2 test procedure includes taking the breast biopsy, preparing the tissue specimen into thin microscopic slides, staining/dying the slides with specific chemical reagents that highlight the HER2 proteins, and inspecting the stained slides under an optical microscope to provide the pathological report. However, this standard HER2 staining procedure suffers from high costs and long turn-around time as the staining process requires laborious sample treatment steps (typically ~24 hours) performed by experts in a dedicated laboratory facility. Researchers have now developed a computational staining approach powered by deep learning, which performs the HER2 staining without requiring any chemicals.

The research team at UCLA (Los Angeles, CA, USA) captured the autofluorescence information of the unstained breast tissue, which is naturally emitted by biological structures when they absorb light. They further trained a deep neural network that rapidly transforms these stain-free autofluorescence images into virtual histological images, revealing the accurate color and contrast as if the tissue sections were chemically stained for HER2. This computational staining process takes only a few minutes per sample and does not need expensive facilities or toxic chemicals. Using only a computer, the HER2 staining could be accomplished much faster and cost-effectively, accelerating breast cancer assessments and treatment.

Board-certified pathologists blindly validated this AI-based virtual HER2 staining technique in terms of both its diagnostic value and stain quality. The pathologists confirmed that the deep learning-generated images provide the equivalent diagnostic accuracy for HER2 assessment and have a staining quality comparable to the standard images chemically stained in the laboratory. This deep learning-powered virtual HER2 staining approach eliminates the need for costly, laborious, and time-consuming HER2 staining procedures performed by histology experts and could be extended to staining of other cancer-related biomarkers to accelerate the traditional histopathology and diagnostic workflow in clinical settings.

Related Links:
UCLA

Gold Supplier
Influenza Type A & B Test
Influenza A+B DUO
New
Plastic Jerricans
Diamond RealSeal Jerricans
New
DNA/RNA Extraction Buffer
Enzymatic DNA/RNA Extraction Buffer
New
Calcitonin ELISA Test
Calcitonin AccuBind ELISA Test System

Print article
SUGENTECH INC.

Channels

Clinical Chem.

view channel
Image: Equivalence of Genetically Elevated LDL and Lipoprotein(a) on Myocardial Infarction (Photo courtesy of Viborg Regional Hospital)

Familial Hypercholesterolemia Patients With ACD Have Elevated Lipoprotein(a)

Familial hypercholesterolemia (FH) is a genetic disorder characterized by high cholesterol levels, specifically very high levels of low-density lipoprotein (LDL cholesterol), in the blood and early cardiovascular... Read more

Molecular Diagnostics

view channel
Image: A cheap blood test could improve diagnosis of myocarditis (Photo courtesy of Queen Mary University of London)

First-Ever Blood Test Could Detect Deadly Heart Inflammation Within Hours

Myocarditis, or inflammation of the heart muscle, is a difficult condition to diagnose. Symptoms include a temperature, fatigue, chest pain and shortness of breath, which can all be easily mistaken for... Read more

Microbiology

view channel
Image: Ring-form trophozoites of Plasmodium vivax in a thin blood smear (Photo courtesy of Centers for Disease Control and Prevention)

Immune Regulators Predict Severity of Plasmodium vivax Malaria

Cytokines and chemokines are immune response molecules that display diverse functions, such as inflammation and immune regulation. In Plasmodium vivax infections, the uncontrolled production of these molecules... Read more

Industry

view channel
Image: With Cell IDx’s acquisition, Leica Biosystems will be moving its multiplexing menu forward (Photo courtesy of Leica Biosystems)

Leica Biosystems Acquires Cell IDx, Expanding Offerings in Multiplexed Tissue Profiling

Leica Biosystems, a technology leader in automated staining and brightfield and fluorescent imaging (Nussloch, Germany), has acquired Cell IDx, Inc. (San Diego, CA, USA), which provides multiplex staining... Read more
Copyright © 2000-2022 Globetech Media. All rights reserved.