We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




CDH1 Overexpression Predicts Early-Stage Bladder Cancer

By LabMedica International staff writers
Posted on 29 Sep 2022
Print article
Image: Colored scanning electron micrograph (SEM) of a bladder cancer cell. Its several long cytoplasmic projections may enable it to be motile (Photo courtesy of Steve Gschmeissner)
Image: Colored scanning electron micrograph (SEM) of a bladder cancer cell. Its several long cytoplasmic projections may enable it to be motile (Photo courtesy of Steve Gschmeissner)

Bladder cancer (BC) is a serious public health problem, but effective biomarkers for BC diagnosis, particularly in the early stage, are still lacking. Identification of reliable biomarkers associated with early-stage BC is of great importance to early treatment and an improved outcome.

For patients with BC in the early stage, effective early detection is the key to improving the cure rate and preventing progression to muscle invasion. Currently, cystoscopy and urine cytology are the gold standard for diagnosing BC. Relatively frequent cystoscopy involves an invasive examination and moreover, the sensitivity of urine cytology to low-grade tumors is low.

Urologists at the Xuzhou Medical University (Xuzhou, China) and their colleagues identified differentially expressed genes (DEGs) using four publicly available early-stage BC gene-expression profiles. Protein–protein interaction (PPI) and survival analysis for hub genes was evaluated. The correlation between methylation of genes and prognosis was evaluated using the MethSurv database. Co-expressed genes were explored using Cancer Cell Line Encyclopedia database and the corresponding expression was assessed in vitro. The competing endogenous RNA network and the immune cell infiltration in BC were generated using data of The Cancer Genome Atlas.

The scientists identified 10 hub genes of the 213 integrated DEGs including CDH1, IGFBP3, PPARG, SDC1, EPCAM, ACTA2, COL3A1, TPM1, ACTC1, and ACTN1. CDH1 appeared to increase from tumor initiation stage and negatively correlated with methylation. Six methylated sites in CDH1 indicated a good prognosis and one site indicated an aberrant prognosis. High CDH1 expression was negatively correlated with infiltrations by most immune cells, such as plasmacytoid dendritic cells (pDCs), regulatory T cells, macrophages, neutrophils, DCs, and natural killer cells. CDH1 was highly positively correlated with EPCAM and appeared to be directly regulated by miR-383.

The authors concluded that the identified oncogenic alterations provide theoretical support for the development of novel biomarkers to advance early-stage BC diagnosis and personalized therapy. A high CDH1 expression was negatively correlated with immune cell infiltration, such as pDCs, Treg, T cells, macrophages, neutrophils, DCs, and NK cells. The study was published on September 21, 2022 in the journal BMC Urology.

Related Links:
Xuzhou Medical University 

Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Calprotectin Assay
Fecal Calprotectin ELISA
New
Ultra-Low Temperature Freezer
iUF118-GX

Print article

Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.