Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Endotoxemia Genetic Profile Reveals an Association with Thromboembolism and Stroke

By LabMedica International staff writers
Posted on 09 Nov 2021
Microorganisms are part of the human body, and bacteria or their components often end up in the circulation. More...
One such bacterial component is lipopolysaccharide (LPS), which is a toxin. High concentrations of LPS in the blood cause sepsis. Low LPS levels, known as endotoxemia, cause low-grade inflammation.

Translocation of LPS in the circulation, endotoxemia, can occur in the interface of host mucosal microbiota and the bloodstream (e.g., in the gut). Endotoxemia is associated with an increased risk of cardiometabolic disorders, including incident cardiovascular disease events, obesity, metabolic syndrome, and diabetes.

A team of medical scientists at the Helsinki University Hospital (Helsinki, Finland) performed a genome‐wide association study of serum lipopolysaccharide activity in 11,296 individuals from six different Finnish study cohorts. Endotoxin activities were determined with a limulus amebocyte lysate (LAL) assay on 1:5 diluted serum samples (HyCult Biotechnology b.v., Uden, the Netherlands), and the results were log transformed (natural logarithm) because of skewed distributions.

A subpopulation of 363 subjects was used to determine endotoxemia by mass spectrometry–based method and a commercially available Endolisa assay (Hyglos GmbH, Bernried, Germany) on 326 individuals. Cohorts were genotyped with various genotyping platforms and went through rigorous quality control. Imputation was performed using 1000 Genomes Project phase 3 reference genotypes.

The investigators reported that lipopolysaccharide activity had a genome‐wide significant association with 741 single‐nucleotide polymorphisms in five independent loci, which were mainly located at genes affecting the contact activation of the coagulation cascade and lipoprotein metabolism and explained 1.5% to 9.2% of the variability in lipopolysaccharide activity levels. The closest genes included KNG1, KLKB1, F12, SLC34A1, YPEL4, CLP1, ZDHHC5, SERPING1, CBX5, and LIPC. The genetic risk score of endotoxemia was associated with deep vein thrombosis, pulmonary embolism, pulmonary heart disease, and venous thromboembolism.

Jaakko Leskelä, DDS, the first author of the study, said, “As an entirely new find, we identified an apparent link between the human genome and the amount of bacterial toxins in the blood. Our findings connected endotoxemia particularly with blood clots, strokes and other diseases related to blood coagulation.”

The authors concluded that the biological activity of lipopolysaccharide in the circulation (i.e., endotoxemia) has a small but highly significant genetic component. Endotoxemia is associated with genetic variation in the contact activation pathway, vasoactivity, and lipoprotein metabolism, which play important roles in host defense, lipopolysaccharide neutralization, and thrombosis, and thereby thromboembolism and stroke. The study was published on October 20, 2021 in the Journal of the American Heart Association.

Related Links:
Helsinki University Hospital
HyCult Biotechnology
Hyglos GmbH


Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Pipet Controller
Stripettor Pro
New
Silver Member
H-FABP Assay
Heart-Type Fatty Acid-Binding Protein Assay
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.