We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Genetic Risk of Inflammatory Bowel Disease Appears Distinct in African Americans

By LabMedica International staff writers
Posted on 03 Mar 2021
Print article
Image: The M220 Focused-ultrasonicator is used for DNA Shearing for Next-Generation Sequencing (Photo courtesy of Covaris).
Image: The M220 Focused-ultrasonicator is used for DNA Shearing for Next-Generation Sequencing (Photo courtesy of Covaris).
The inflammatory bowel diseases Crohn’s disease (CD) and ulcerative colitis (UC) arise in the context of inappropriate activation of the intestinal immune system in response to an environmental trigger in individuals who are genetically predisposed.

Genetic discoveries of inflammatory bowel disease have been made primarily in populations of European ancestry and utilizing genome-wide genotype data. This predominance, combined with a focus on common alleles, has left the understanding of the role of rare variants among non-European populations incomplete.

A large team of multi-center multidisciplinary scientists led by the Emory University School of Medicine (Atlanta, GA, USA) sequenced the genomes of nearly 1,800 African Americans with inflammatory bowel diseases (IBD) and more than 1,600 unaffected controls with African ancestry from the USA. All DNA samples investigated in the study (a total of 3,610 before quality control [QC]) were processed and sequenced.

Genomic DNA extracted from the blood of sampled participants was fragmented to a target size of 385 bp fragments via a Covaris Focused-ultrasonicator (Woburn, MA, USA). Completed libraries were quantified with quantitative PCR kit (KAPA Biosystems, Wilmington, MA, USA), normalized to 2.2 nM, and were pooled into 24-plexes. Sample pools were combined with HiSeqX Cluster Amp Reagents EPX1, EPX2, and EPX3, and cluster generation was performed with the Illumina cBot and DNA libraries were sequenced with the HiSeqX sequencing system (Illumina, San Diego, CA, USA).

While the team's search did not unearth new loci with genome-wide significant ties to IBD, the genome sequence data and subsequent fine-mapping analyses suggested that several risk alleles occurred at different frequencies or had different effect sizes in the African American participants compared to individuals of European descent. For example, the major effect at PTGER4 fine maps to a single credible interval of 22 single-nucleotide polymorphisms (SNPs) corresponding to one of four independent associations at the locus in European ancestry individuals, but with an elevated odds ratio for Crohn’s disease in African Americans.

A rare variant aggregate analysis implicates Ca2+-binding neuro-immunomodulator CALB2 in ulcerative colitis. Highly significant overall overlap of common variant risk for inflammatory bowel disease susceptibility between individuals with African and European ancestries was observed, with 41 of 241 previously known lead variants replicated and overall correlations in effect sizes of 0.68 for combined inflammatory bowel disease.

Subra Kugathasan, MD, a professor of pediatrics and human genetics and a senior author of the study, said, “Subtle differences influence the performance of polygenic risk scores, and we show that ancestry-appropriate weights significantly improve polygenic prediction in the highest percentiles of risk.”

The authors concluded that their analyses provide an example of how polygenic analysis needs to be adjusted for ancestry when considering ethnic disparities in healthcare. Frequency distributions of polygenic risk scores can differ markedly across populations, mostly because of deviations in allele frequencies, although ascertainment biases in discovering common variant associations are also a concern. The study was published on February 17, 2021 in the journal American Journal of Human Genetics.

Related Links:
Emory University School of Medicine
Covaris
KAPA Biosystems
Illumina


New
Gold Member
Human Chorionic Gonadotropin Test
hCG Quantitative - R012
Verification Panels for Assay Development & QC
Seroconversion Panels
New
TRAcP 5b Assay
TRAcP 5b (BoneTRAP) Assay
New
PSA Test
Humasis PSA Card

Print article

Channels

Clinical Chemistry

view channel
Image: Professor Nicole Strittmatter (left) and first author Wei Chen stand in front of the mass spectrometer with a tissue sample (Photo courtesy of Robert Reich/TUM)

Mass Spectrometry Detects Bacteria Without Time-Consuming Isolation and Multiplication

Speed and accuracy are essential when diagnosing diseases. Traditionally, diagnosing bacterial infections involves the labor-intensive process of isolating pathogens and cultivating bacterial cultures,... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: The new algorithms can help predict which patients have undiagnosed cancer (Photo courtesy of Adobe Stock)

Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer

Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.