We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Urine Test Used to Individualize Bladder Cancer Treatment

By LabMedica International staff writers
Posted on 08 Aug 2019
Print article
Image: A diagram of the workflow of the conditional reprogramming (CR) method for collection of urine and tissue samples and establishment of primary bladder cancer cell cultures (Photo courtesy of Fudan University).
Image: A diagram of the workflow of the conditional reprogramming (CR) method for collection of urine and tissue samples and establishment of primary bladder cancer cell cultures (Photo courtesy of Fudan University).
Bladder cancer is the most common urologic cancer in China and is in the top 10 most common cause of cancer death in the USA, leading to approximately 17,000 deaths in 2018.

Currently no method is available to predict which patients will respond to therapy and, apart from new and limited use of immunotherapy, treatment regimens for bladder cancer have not improved and survival rates have not increased in the last 30 years.

A large team of investigators from Georgetown University Medical Center (Washington, DC, USA) and Fudan University (Shanghai, China) have devised a very promising non-invasive and individualized technique for detecting and treating bladder cancer. The scientists adapted a conditional reprogramming (CR) technique to explore the possibility of establishing bladder cancer cells from patients’ tumor tissues and urine samples and applied the cultures for whole exome sequencing (WES) and drug testing.

The team compared tumor biopsies from 70 patients with individual urine specimens and both processed through CR cultures (CRC). Primary cells isolated from urine and tumor samples both rapidly formed CRC and representative three-dimensional compact spheroids. The investigators reported that the overall success rate of culturing urine CRCs was 83.3% (50/60), specifically, high-grade bladder cancer was 85.4% (41/48) and low-grade bladder cancer was 75% (9/12). The analysis of the mutation ratio for both patient tissue and corresponding CRC confirmed that both single nucleotide variants and DNA insertions and deletions were retained during the culturing.

After determining that the urine colonies and tumor tissue samples had matching molecular characteristics and genetic alterations, the scientists tested urine-based CRC cancer cells with 64 clinical oncology drugs. They found that overall the urine-based cancer cells were resistant to more than half of the drugs and they discovered that many of the urine cancer cells were highly sensitive to one of the drugs, bortezomib, which is currently being tested for a different GU tumor, urothelial cancer.

Shuai Jiang, MD, a urologist and the lead author of the study, said, “We also identified some mutations not identified in the original tumor biopsies, suggesting that the urine cell cultures better reflect overall tumor diversity than a single biopsy. The CRC technique may also expand our understanding of how low frequency mutations help lead to bladder cancer development and progression. Overall, CRC cultures may identify new actionable drug targets and help explain why this cancer is so often resistant to treatment.” The study was published on July 25, 2019, in the journal Protein & Cell.

Related Links:
Georgetown University Medical Center
Fudan University

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
HLX
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Real-time PCR System
GentierX3 Series

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: The study showed the blood-based cancer screening test detects 83% of people with colorectal cancer with specificity of 90% (Photo courtesy of Guardant Health)

Blood Test Shows 83% Accuracy for Detecting Colorectal Cancer

Colorectal cancer is the second biggest cause of cancer deaths among adults in the U.S., with forecasts suggesting 53,010 people might die from it in 2024. While fewer older adults are dying from this... Read more

Hematology

view channel
Image: The Gazelle Hb Variant Test (Photo courtesy of Hemex Health)

First Affordable and Rapid Test for Beta Thalassemia Demonstrates 99% Diagnostic Accuracy

Hemoglobin disorders rank as some of the most prevalent monogenic diseases globally. Among various hemoglobin disorders, beta thalassemia, a hereditary blood disorder, affects about 1.5% of the world's... Read more

Microbiology

view channel
Image: The new platform is designed to perform blood-based diagnoses of nontuberculosis mycobacteria (Photo courtesy of 123RF)

New Blood Test Cuts Diagnosis Time for Nontuberculous Mycobacteria Infections from Months to Hours

Breathing in nontuberculous mycobacteria (NTM) is a common experience for many people. These bacteria are present in water systems, soil, and dust all over the world and usually don't cause any problems.... Read more

Industry

view channel
Image: These new assays are being developed for use on the recently introduced DxI 9000 Immunoassay Analyzer (Photo courtesy of Beckman Coulter)

Beckman Coulter and Fujirebio Expand Partnership on Neurodegenerative Disease Diagnostics

Beckman Coulter Diagnostics (Brea, CA, USA) and Fujirebio Diagnostics (Tokyo, Japan) have expanded their partnership focused on the development, manufacturing and clinical adoption of neurodegenerative... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.