We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Urine Test Used to Individualize Bladder Cancer Treatment

By LabMedica International staff writers
Posted on 08 Aug 2019
Print article
Image: A diagram of the workflow of the conditional reprogramming (CR) method for collection of urine and tissue samples and establishment of primary bladder cancer cell cultures (Photo courtesy of Fudan University).
Image: A diagram of the workflow of the conditional reprogramming (CR) method for collection of urine and tissue samples and establishment of primary bladder cancer cell cultures (Photo courtesy of Fudan University).
Bladder cancer is the most common urologic cancer in China and is in the top 10 most common cause of cancer death in the USA, leading to approximately 17,000 deaths in 2018.

Currently no method is available to predict which patients will respond to therapy and, apart from new and limited use of immunotherapy, treatment regimens for bladder cancer have not improved and survival rates have not increased in the last 30 years.

A large team of investigators from Georgetown University Medical Center (Washington, DC, USA) and Fudan University (Shanghai, China) have devised a very promising non-invasive and individualized technique for detecting and treating bladder cancer. The scientists adapted a conditional reprogramming (CR) technique to explore the possibility of establishing bladder cancer cells from patients’ tumor tissues and urine samples and applied the cultures for whole exome sequencing (WES) and drug testing.

The team compared tumor biopsies from 70 patients with individual urine specimens and both processed through CR cultures (CRC). Primary cells isolated from urine and tumor samples both rapidly formed CRC and representative three-dimensional compact spheroids. The investigators reported that the overall success rate of culturing urine CRCs was 83.3% (50/60), specifically, high-grade bladder cancer was 85.4% (41/48) and low-grade bladder cancer was 75% (9/12). The analysis of the mutation ratio for both patient tissue and corresponding CRC confirmed that both single nucleotide variants and DNA insertions and deletions were retained during the culturing.

After determining that the urine colonies and tumor tissue samples had matching molecular characteristics and genetic alterations, the scientists tested urine-based CRC cancer cells with 64 clinical oncology drugs. They found that overall the urine-based cancer cells were resistant to more than half of the drugs and they discovered that many of the urine cancer cells were highly sensitive to one of the drugs, bortezomib, which is currently being tested for a different GU tumor, urothelial cancer.

Shuai Jiang, MD, a urologist and the lead author of the study, said, “We also identified some mutations not identified in the original tumor biopsies, suggesting that the urine cell cultures better reflect overall tumor diversity than a single biopsy. The CRC technique may also expand our understanding of how low frequency mutations help lead to bladder cancer development and progression. Overall, CRC cultures may identify new actionable drug targets and help explain why this cancer is so often resistant to treatment.” The study was published on July 25, 2019, in the journal Protein & Cell.

Related Links:
Georgetown University Medical Center
Fudan University

Gold Member
Chagas Disease Test
CHAGAS Cassette
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Chlamydia Trachomatis Assay
Chlamydia Trachomatis IgG
New
Creatine Kinase-MB Assay
CK-MB Test

Print article

Channels

Clinical Chemistry

view channel
Image: The GlycoLocate platform uses multi-omics and advanced computational biology algorithms to diagnose early-stage cancers (Photo courtesy of AOA Dx)

AI-Powered Blood Test Accurately Detects Ovarian Cancer

Ovarian cancer ranks as the fifth leading cause of cancer-related deaths in women, largely due to late-stage diagnoses. Although over 90% of women exhibit symptoms in Stage I, only 20% are diagnosed in... Read more

Molecular Diagnostics

view channel
Image: Karius Focus BAL is designed to quickly identify the etiology of lung infections and improve diagnostic yield over standard of care testing (Photo courtesy of Karius)

Microbial Cell-Free DNA Test Accurately Identifies Pathogens Causing Pneumonia and Other Lung Infections

Bronchoalveolar lavage (BAL) is a commonly used procedure for diagnosing lung infections, especially in immunocompromised patients. However, standard tests often fail to pinpoint the exact pathogen, leading... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: The new algorithms can help predict which patients have undiagnosed cancer (Photo courtesy of Adobe Stock)

Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer

Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.