We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Breath and Urine Tests Detect Early Breast Cancer

By LabMedica International staff writers
Posted on 08 May 2018
Breast cancer is the most commonly diagnosed malignancy among females and the leading cause of death around the world. More...
In 2016, breast cancer accounted for 29% of all new cancers identified in the USA and was responsible for 14% all cancer-related deaths.

Current diagnostic imaging detection for smaller tumors has significant drawbacks: dual-energy digital mammography, while effective, increases radiation exposure, and magnetic resonance imaging (MRI) is expensive. Biopsies and serum biomarker identification processes are invasive, equipment-intensive and require significant expertise.

Scientists at the Ben-Gurion University of the Negev (Beersheba, Israel) collected exhaled breath samples from 48 breast cancer (BC) patients and 45 healthy women that served as a control group. Urine samples were collected from 37 patients who were diagnosed with BC based on physical or mammography tests prior to any surgery, and from 36 healthy women. Two commercial electronic noses (ENs) were used for the exhaled breath analysis. Urine samples were analyzed using Gas-Chromatography Mass-Spectrometry (GC-MS).

Statistical analysis of results was based on an artificial neural network (ANN) obtained following feature extraction and feature selection processes. The model obtained allows classification of breast cancer patients with an accuracy of 95.2% ± 7.7% using data of one EN, and an accuracy of 85% for the other EN and for urine samples.

The authors concluded that the developed statistical analysis method enables accurate classification of patients as healthy or with BC based on simple non-invasive exhaled breath and a urine sample analysis. This study demonstrates that available commercial ENs can be used, provided that the data analysis is carried out using an appropriate method.

Yehuda Zeiri, PhD, a professor of Biomedical Engineering and senior author of the study said, “Our new approach utilizing urine and exhaled breath samples, analyzed with inexpensive, commercially available processes, is non-invasive, accessible and may be easily implemented in a variety of settings.” The study was published on May 1, 2018, in the journal Computers in Biology and Medicine.

Related Links:
Ben-Gurion University of the Negev


Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Portable Electronic Pipette
Mini 96
8-Channel Pipette
SAPPHIRE 20–300 µL
Automated Chemiluminescence Immunoassay Analyzer
MS-i3080
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New evidence shows viscoelastic testing can improve assessment of blood clotting during postpartum hemorrhage (Photo courtesy of 123RF)

Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage

Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more

Immunology

view channel
Image: When assessing the same lung biopsy sample, research shows that only 18% of pathologists will agree on a TCMR diagnosis (Photo courtesy of Thermo Fisher)

Molecular Microscope Diagnostic System Assesses Lung Transplant Rejection

Lung transplant recipients face a significant risk of rejection and often require routine biopsies to monitor graft health, yet assessing the same biopsy sample can be highly inconsistent among pathologists.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.