We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

QIAGEN

Qiagen is a provider of sample and assay technologies for molecular diagnostics and applied testing, including comple... read more Featured Products: More products

Download Mobile App




DNA-Based Test Determines Degree Of Liver Fibrosis

By LabMedica International staff writers
Posted on 28 Apr 2016
Print article
Image: The Pyromark Q96 MD pyrosequencing instrument (Photo courtesy of Qiagen).
Image: The Pyromark Q96 MD pyrosequencing instrument (Photo courtesy of Qiagen).
Non-alcoholic fatty liver disease (NAFLD) accounts for the majority of liver disease burden in the Western world. Liver biopsy remains the gold standard test to accurately stage fibrosis in patients with NAFLD, but it is invasive and carries risks.

A DNA-based test has been developed that determines the degree of fibrosis in the liver which could be a replacement for a liver biopsy and this new type of genetic blood test diagnoses scarring in the liver even before an individual may feel ill.

Scientists at Newcastle University (Newcastle upon Tyne, UK) recruited 26 patients with biopsy-proven NAFLD and age-matched controls from the liver and gastroenterology clinics. Plasma cell-free circulating DNA methylation of peroxisome proliferator-activated receptor gamma (PPARγ) was quantitatively assessed by pyrosequencing. Liver DNA methylation was quantitatively assessed by pyrosequencing NAFLD explant tissue, subjected to laser capture microdissection (LCM). Patients with alcoholic liver disease (ALD) were also subjected to plasma DNA and LCM pyrosequencing.

DNA was extracted from 200 μL of plasma and DNA was also extracted from laser capture microdissected tissue (PALM MicroBeam, Zeiss, Jena, Germany) using the QIAamp DNA micro kit (Qiagen, Venlo, Netherlands). Methylation of specific cytosines within CpG dinucleotides was quantified by pyrosequencing using a Qiagen Pyromark Q96 MD instrument. Percutaneous liver biopsies were performed for histological assessment.

Quantitative plasma DNA methylation of PPARγ stratified patients into mild (Kleiner 1–2) and severe (Kleiner 3–4) fibrosis (CpG1: 63% versus 86%; CpG2: 51% versus 65%). Hypermethylation at the PPARγ promoter of plasma DNA correlated with changes in hepatocellular rather than myofibroblast DNA methylation. Similar results were demonstrated in patients with ALD cirrhosis. Jelena Mann, PhD, the senior author of the study said, “This is the first time that a DNA methylation 'signature' from the blood has been shown to match the severity of a liver disease. It opens up the possibility of an improved blood test for liver fibrosis in the future.”

The authors concluded that differential DNA methylation at the PPARγ promoter can be detected within the pool of cell-free DNA of human plasma. With further validation, plasma DNA methylation of PPARγ could potentially be used to non-invasively stratify liver fibrosis severity in patients with NAFLD. Plasma DNA methylation signatures reflect the molecular pathology associated with fibrotic liver disease. The study was published on March 21, 2016 in the journal Gut.

Related Links:
Newcastle University
Zeiss
Qiagen

Gold Member
Veterinary Hematology Analyzer
Exigo H400
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Nutating Mixer
Enduro MiniMix
New
Blood Gas and Chemistry Analysis System
Edan i500

Print article

Channels

Clinical Chemistry

view channel
Image: The GlycoLocate platform uses multi-omics and advanced computational biology algorithms to diagnose early-stage cancers (Photo courtesy of AOA Dx)

AI-Powered Blood Test Accurately Detects Ovarian Cancer

Ovarian cancer ranks as the fifth leading cause of cancer-related deaths in women, largely due to late-stage diagnoses. Although over 90% of women exhibit symptoms in Stage I, only 20% are diagnosed in... Read more

Molecular Diagnostics

view channel
Image: The advanced molecular test is designed to improve diagnosis of a genetic form of COPD (Photo courtesy of National Jewish Health)

Groundbreaking Molecular Diagnostic Test Accurately Diagnoses Major Genetic Cause of COPD

Chronic obstructive pulmonary disease (COPD) and Alpha-1 Antitrypsin Deficiency (AATD) are both conditions that can cause breathing difficulties, but they differ in their origins and inheritance.... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: The new algorithms can help predict which patients have undiagnosed cancer (Photo courtesy of Adobe Stock)

Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer

Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.