We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

QIAGEN

Qiagen is a provider of sample and assay technologies for molecular diagnostics and applied testing, including comple... read more Featured Products: More products

Download Mobile App




DNA-Based Test Determines Degree Of Liver Fibrosis

By LabMedica International staff writers
Posted on 28 Apr 2016
Print article
Image: The Pyromark Q96 MD pyrosequencing instrument (Photo courtesy of Qiagen).
Image: The Pyromark Q96 MD pyrosequencing instrument (Photo courtesy of Qiagen).
Non-alcoholic fatty liver disease (NAFLD) accounts for the majority of liver disease burden in the Western world. Liver biopsy remains the gold standard test to accurately stage fibrosis in patients with NAFLD, but it is invasive and carries risks.

A DNA-based test has been developed that determines the degree of fibrosis in the liver which could be a replacement for a liver biopsy and this new type of genetic blood test diagnoses scarring in the liver even before an individual may feel ill.

Scientists at Newcastle University (Newcastle upon Tyne, UK) recruited 26 patients with biopsy-proven NAFLD and age-matched controls from the liver and gastroenterology clinics. Plasma cell-free circulating DNA methylation of peroxisome proliferator-activated receptor gamma (PPARγ) was quantitatively assessed by pyrosequencing. Liver DNA methylation was quantitatively assessed by pyrosequencing NAFLD explant tissue, subjected to laser capture microdissection (LCM). Patients with alcoholic liver disease (ALD) were also subjected to plasma DNA and LCM pyrosequencing.

DNA was extracted from 200 μL of plasma and DNA was also extracted from laser capture microdissected tissue (PALM MicroBeam, Zeiss, Jena, Germany) using the QIAamp DNA micro kit (Qiagen, Venlo, Netherlands). Methylation of specific cytosines within CpG dinucleotides was quantified by pyrosequencing using a Qiagen Pyromark Q96 MD instrument. Percutaneous liver biopsies were performed for histological assessment.

Quantitative plasma DNA methylation of PPARγ stratified patients into mild (Kleiner 1–2) and severe (Kleiner 3–4) fibrosis (CpG1: 63% versus 86%; CpG2: 51% versus 65%). Hypermethylation at the PPARγ promoter of plasma DNA correlated with changes in hepatocellular rather than myofibroblast DNA methylation. Similar results were demonstrated in patients with ALD cirrhosis. Jelena Mann, PhD, the senior author of the study said, “This is the first time that a DNA methylation 'signature' from the blood has been shown to match the severity of a liver disease. It opens up the possibility of an improved blood test for liver fibrosis in the future.”

The authors concluded that differential DNA methylation at the PPARγ promoter can be detected within the pool of cell-free DNA of human plasma. With further validation, plasma DNA methylation of PPARγ could potentially be used to non-invasively stratify liver fibrosis severity in patients with NAFLD. Plasma DNA methylation signatures reflect the molecular pathology associated with fibrotic liver disease. The study was published on March 21, 2016 in the journal Gut.

Related Links:
Newcastle University
Zeiss
Qiagen

Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
New
Preterm Delivery Test
PREMAQUICK
New
Silver Member
1,5-anhydroglucitol (1,5-AG) Assay
1,5-anhydroglucitol (1,5-AG) Assay

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Molecular Diagnostics

view channel
Image: New Alzheimer’s studies have revealed disease biology, risk for progression, and potential for a novel blood test (Photo courtesy of Adobe Stock)

Novel Blood Test Could Reveal Alzheimer’s Disease Biology and Risk for Progression

The inability to diagnose Alzheimer’s disease, the most prevalent form of dementia in the elderly, at an early stage of molecular pathology is considered a key reason why treatments fail in clinical trials.... Read more

Hematology

view channel
Image: The discovery of a new blood group has solved a 50- year-old mystery (Photo courtesy of 123RF)

Newly Discovered Blood Group System to Help Identify and Treat Rare Patients

The AnWj blood group antigen, a surface marker discovered in 1972, has remained a mystery regarding its genetic origin—until now. The most common cause of being AnWj-negative is linked to hematological... Read more

Microbiology

view channel
Image: The Accelerate WAVE system delivers rapid AST directly from positive blood culture bottles (Photo courtesy of Accelerate Diagnostics)

Rapid Diagnostic System to Deliver Same-Shift Antibiotic Susceptibility Test Results

The World Health Organization estimates that sepsis impacts around 49 million people worldwide each year, resulting in roughly 11 million deaths, with about 1.32 million of these deaths directly linked... Read more

Industry

view channel
Image: The Scopio X100 and X100HT full-field digital cell morphology solution (Photo courtesy of Beckman Coulter)

Beckman Coulter and Scopio Labs Add World's First Digital Bone Marrow Imaging and Analysis to Long-Term Partnership

Since 2022, Beckman Coulter (Brea, CA, USA) and Scopio Labs (Tel Aviv, Israel) have been working together to accelerate adoption of the next generation of digital cell morphology. Scopio's X100 and X100HT... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.