We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




One-Step CRISPR-Based Assay Could Streamline COVID-19 Testing

By LabMedica International staff writers
Posted on 28 Sep 2020
Print article
Image: Scanning electron microscope (SEM) image showing SARS-CoV-2 (round gold objects) emerging from the surface of laboratory cultured cells (Photo courtesy of [U.S.] National Institute of Allergy and Infectious Diseases)
Image: Scanning electron microscope (SEM) image showing SARS-CoV-2 (round gold objects) emerging from the surface of laboratory cultured cells (Photo courtesy of [U.S.] National Institute of Allergy and Infectious Diseases)
An advanced CRISPR-based diagnostic test for COVID-19 produces results in 30 to 60 minutes, with accuracy similar to the standard CDC (Centers for Disease Control and Prevention) RT- qPCR test now in routine use.

Methods such as SHERLOCK (specific high-sensitivity enzymatic reporter unlocking), which typically use a two-step process (target amplification followed by CRISPR-mediated nucleic acid detection), have been used to detect SARS-CoV-2, the causative agent of COVID-19.The technical requirements of this approach, however, are more complex than those used in point-of-care testing because they depend on an RNA extraction step and multiple liquid-handling steps that increase the risk of cross-contamination of samples.

To avoid these complications, investigators at the Massachusetts Institute of Technology (Cambridge, MA, USA) and their collaborators developed a simple test for detection of SARS-CoV-2. The sensitivity of this test was shown to be similar to that of reverse-transcription–quantitative polymerase-chain-reaction (RT-qPCR) assays.

The new test was based on the CRISPR-based SHERLOCK (Specific High-sensitivity Enzymatic Reporter unLOCKing) platform. SHERLOCK utilizes an RNA-targeting Cas protein for sensitive and specific detection of viral nucleic acid. This is method works by amplifying genetic sequences and programming a CRISPR molecule to detect the presence of a specific genetic signature in a sample, which can also be quantified. When it finds those signatures, the CRISPR enzyme is activated and releases a robust signal. This signal can be adapted to work on a simple paper strip test, in laboratory equipment, or to provide an electrochemical readout that can be read with a mobile phone.

To rapidly detect the coronavirus, the investigators modified the CRISPR-based assay into “STOP” (SHERLOCK testing in one pot), which was a streamlined assay that combined simplified extraction of viral RNA with isothermal amplification and CRISPR-mediated detection. This test could be performed at a single temperature in less than an hour and with minimal equipment.

The integration of isothermal amplification with CRISPR-mediated detection required the development of a common reaction buffer that could accommodate both steps. To amplify viral RNA, the investigators chose reverse transcription followed by loop-mediated isothermal amplification (LAMP) because LAMP reagents are widely available and use defined buffers that are amenable to Cas enzymes. LAMP operates at 55 to 70 degrees Celsius and requires a thermostable Cas enzyme such as Cas12b from Alicyclobacillus acidiphilus (AapCas12b).

The investigators systematically evaluated multiple LAMP primer sets and AapCas12b guide RNAs to identify the best combination to target gene N, encoding the SARS-CoV-2 nucleocapsid protein, in a one-pot reaction mixture. To simplify RNA extraction and to boost sensitivity, the investigators adapted a magnetic bead purification method. The magnetic beads concentrated SARS-CoV-2 RNA genomes from an entire nasopharyngeal or anterior nasal swab into one STOPCOVID reaction mixture. The test was streamlined further by combining the lysis and magnetic bead–binding steps and eliminating the ethanol wash and elution steps to reduce the duration of sample extraction to 15 minutes with minimal hands-on time.

The STOPCOVID. Test was compared with the CDC standard two-step test (i.e., RNA extraction followed by RT-qPCR)). The concentration of substrate by magnetic beads in STOPCOVID allowed detection of viral RNA from the entire swab sample, yielding an input (in terms of quantity of viral RNA) that was 600 times that afforded by the CDC test. As a result, STOPCOVID reliably detected a viral load that was one thirtieth that detected by the CDC RT-qPCR test (100 copies per sample, or 33 copies per milliliter, as compared with 1000 copies per milliliter).

The performance of STOPCOVID was evaluated in a blind test conducted at an external laboratory. A total of 202 SARS-CoV-2–positive and 200 SARS-CoV-2–negative nasopharyngeal swab samples were obtained from patients. These samples were prepared by adding 50 microliters of swab specimens obtained from patients with COVID-19 to a clean swab, in accordance with the recommendation of the [U.S.] Food and Drug Administration for simulating whole swabs for regulatory applications. Results showed that STOPCOVID had a sensitivity of 93.1% and a specificity of 98.5%. Positive samples were detected in 15 to 45 minutes.

"The goal is to make this test easy to use and sensitive, so that we can tell whether or not someone is carrying the virus as early as possible," said senior author Dr. Feng Zhang, professor of neurosciences at the Massachusetts Institute of Technology.

The STOPCOVID assay was described in the September 16, 2020, online edition of the New England Journal of Medicine.

Related Links:
Massachusetts Institute of Technology

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: A false color scanning election micrograph of lung cancer cells grown in culture (Photo courtesy of Anne Weston)

AI Tool Precisely Matches Cancer Drugs to Patients Using Information from Each Tumor Cell

Current strategies for matching cancer patients with specific treatments often depend on bulk sequencing of tumor DNA and RNA, which provides an average profile from all cells within a tumor sample.... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: Fingertip blood sample collection on the Babson Handwarmer (Photo courtesy of Babson Diagnostics)

Unique Hand-Warming Technology Supports High-Quality Fingertip Blood Sample Collection

Warming the hand is an effective way to facilitate blood collection from a fingertip, yet off-the-shelf solutions often do not fulfill laboratory requirements. Now, a unique hand-warming technology has... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.