We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




New Technique Identifies Pathological Abnormalities Associated with Motor Neuron Disease

By LabMedica International staff writers
Posted on 08 Aug 2024

Motor neuron disease (MND), also referred to as amyotrophic lateral sclerosis (ALS), is a debilitating condition where messages from the brain's motor neurons fail to reach the muscles, resulting in muscle weakening. More...

At present, there is no cure for MND. Now, researchers have developed a new imaging technique to detect pathological abnormalities linked to MND, which could enhance the understanding of brain changes responsible for the disease and potentially aid in developing new treatments.

This advancement was highlighted in a study published in Nature Communications, a collaborative effort between the University of Birmingham (Birmingham, UK) and the University of Sheffield (Sheffield, UK). Researchers at the University of Birmingham developed the new method called native ambient mass spectrometry (NAMS), allowing them to analyze proteins in their natural state directly from brain and spinal cord tissue samples. This technique provides unprecedented detail in studying protein structures in relation to their location within the tissue.

Working in collaboration with colleagues at the University of Sheffield, the team discovered a metal deficiency in a protein known as SOD1 and showed that it accumulates in specific areas of the brain and spinal cord in mice with MND. SOD1 has been previously linked to MND, but this research marks the first instance of detailed molecular imaging demonstrating how variants of this protein, lacking metal ions, accumulate in mice affected by the disease. Future research will aim to confirm if these imbalances also occur in human tissues and will explore potential treatments for these imbalances using existing drugs.

"This approach is the first to show that this form of SOD1 correlates with the pathology of motor neuron disease,” said lead researcher Helen Cooper from Birmingham's School of Biosciences. “It's a very early step towards finding treatments for MND and is also an exciting new route for understanding the molecular basis of other diseases in unprecedented detail."

"We were very excited to apply this fantastic methodology which Helen's team have developed to gain new insights into the biology of MND and we look forward to using the technology further to explore why motor neurons die and find new interventions for those affected by MND," added Richard Mead from the Sheffield Institute for Translational Neuroscience.

Related Links:
University of Birmingham


New
Gold Member
Clinical Drug Testing Panel
DOA Urine MultiPlex
POC Helicobacter Pylori Test Kit
Hepy Urease Test
8-Channel Pipette
SAPPHIRE 20–300 µL
Gram-Negative Blood Culture Assay
LIAISON PLEX Gram-Negative Blood Culture Assay
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.