We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




Simple Blood Draw Helps Diagnose Lung Cancer 10 Times Faster

By LabMedica International staff writers
Posted on 04 Oct 2024
Print article
Image: A scanning electron microscope image of chiral gold nanoparticles developed for a new microfluidic chip (Matter, 2024; DOI: 10.1016/j.matt.2024.09.005)
Image: A scanning electron microscope image of chiral gold nanoparticles developed for a new microfluidic chip (Matter, 2024; DOI: 10.1016/j.matt.2024.09.005)

Once dismissed as cellular waste, exosomes—tiny vesicles released by cells containing proteins, DNA, or RNA fragments—have emerged as vital players in cell-to-cell communication over the past decade. While exosomes from healthy cells carry important signals throughout the body, those from cancer cells can facilitate tumor spread by preparing tissues to receive tumor cells before they arrive. Exosomes carry proteins both inside and on their surfaces, and these surface proteins are often chiral, meaning they have a right- or left-handed twist, which influences how they interact with light. In cancer exosomes, these surface proteins are frequently mutated, meaning the protein's molecular structure has been altered by genetic changes. Such mutations subtly affect the protein’s shape, which in turn shifts its chirality. These alterations can be detected by analyzing how the proteins interact with circularly polarized light, which can "match" the twist of the proteins. When the twist aligns, a strong signal is returned to a light detector. However, these light signals are usually weak and difficult to interpret and detecting exosomes involves extracting them from blood samples, which is challenging because of their tiny size, ranging from just 30 to 200 nanometers.

Researchers at University of Michigan (Ann Arbor, MI, USA) have now developed a microchip capable of capturing exosomes from blood plasma to detect lung cancer. This new diagnostic method, which uses a simple blood draw, is 10 times faster and 14 times more sensitive than previous approaches, according to the research team. To identify exosomes, the team designed gold nanoparticles in the shape of twisted disks, adapted to capture exosomes within a central cavity. These cavities are tailored to perfectly match the size, shape, and surface chemistry of the exosomes, allowing for reliable capture. With a right-handed twist, the nanoparticles resonate strongly with right-twisting light but reflect little signal when exposed to left-twisting light—a phenomenon known as circular dichroism. Once the exosomes are trapped in the cavities, the proteins they carry can either amplify or diminish the return signal based on their shape.

The gold nanoparticle cavities, arranged along the tiny channels of a microfluidic chip, successfully captured exosomes from blood plasma and differentiated between samples from healthy individuals and those with lung cancer, as reported in the journal Matter. The microfluidic chips, called CDEXO chips (Circular Dichroism detection of EXOsomes), could also potentially distinguish specific lung cancer mutations, aiding doctors in tailoring treatments to target the most prevalent mutations as they evolve. The researchers envision the CDEXO chip initially being used alongside traditional diagnostic methods, with the potential to expand its use to screen for other cancers, improving early detection efforts as trust in the technology grows.

"As a next step, we want to look at most known solid tumor mutated proteins to understand how their spectral signatures are different,” said Sunitha Nagrath, U-M professor of chemical and biomedical engineering and co-corresponding author of the study. “From here, we can push the technology to further increase those spectral differences to distinguish between proteins."

New
Gold Member
Human Chorionic Gonadotropin Test
hCG Quantitative - R012
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Calprotectin Assay
Fecal Calprotectin ELISA
New
Herpes Simplex Virus ELISA
HSV 2 IgG – ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: The GlycoLocate platform uses multi-omics and advanced computational biology algorithms to diagnose early-stage cancers (Photo courtesy of AOA Dx)

AI-Powered Blood Test Accurately Detects Ovarian Cancer

Ovarian cancer ranks as the fifth leading cause of cancer-related deaths in women, largely due to late-stage diagnoses. Although over 90% of women exhibit symptoms in Stage I, only 20% are diagnosed in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: The new algorithms can help predict which patients have undiagnosed cancer (Photo courtesy of Adobe Stock)

Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer

Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.