Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




New AI Protocol Instantaneously Detects Cancer Genomic Biomarkers Directly from Tumor Biopsy Slides

By LabMedica International staff writers
Posted on 05 Aug 2024

The late 90s marked the beginning of the era of precision oncology, yet recent studies in the U. More...

S. indicate that most cancer patients are not receiving FDA-approved precision therapies. Factors such as high costs, extensive tissue requirements, and lengthy processing times have hampered the broader adoption of precision oncology, often leading to treatments that are not only suboptimal but potentially harmful. A significant barrier is the lack of testing; many cancer patients endure critical delays waiting for standard genomic tests following an initial tumor diagnosis, which can be life-threatening. Now, a groundbreaking advancement has been made with the development of a new generation of artificial intelligence (AI) tools that enable the rapid and cost-effective detection of clinically actionable genomic alterations directly from tumor biopsy slides. This innovation could cut weeks and save thousands of dollars in clinical oncology treatment workflows for diseases like breast and ovarian cancers.

The new AI protocol, termed DeepHRD, was developed by researchers at the University of California San Diego (La Jolla, CA, USA). It marks a significant leap forward in eliminating the delays and health disparities undermining the potential of precision medicine for cancer patients. The tool leverages minimal patient information available early in the diagnostic process. Almost every cancer patient undergoes a tumor biopsy, which is traditionally processed and reviewed under a light microscope—a method established in the late 19th century and still foundational in early oncology workflows. The DeepHRD AI protocol can be applied directly to standard tissue slides for instant and accurate identification of genomic cancer biomarkers, as detailed in research published in the Journal of Clinical Oncology.

The AI specifically identifies biomarkers for homologous recombination deficiency (HRD), a critical DNA damage repair mechanism loss. Ovarian and breast cancer patients with HRD typically respond well to platinum and PARP (poly-ADP ribose polymerase) inhibitor therapies. This AI model can dramatically expedite treatment decisions immediately following the initial tissue diagnosis, offering a significant time advantage. Unlike traditional genomic testing, which has a failure rate of 20 to 30 percent necessitating re-tests or further invasive biopsies, this AI tool exhibits a virtually zero failure rate.

This technology is poised to democratize access to critical genomic biomarker detection for precision therapy, thus enabling equitable treatment options for advanced cancer patients globally. It holds particular promise for bridging significant gaps in precision medicine, especially in under-resourced or remote areas where such testing is less common. The researchers are now working to rapidly transition this AI platform to clinical settings, aiming to make precision therapy a reality for more patients by providing faster access to appropriate treatments. They anticipate that this technology could eventually apply to a wide range of genomic biomarkers and numerous cancer types.


New
Gold Member
Hematology Analyzer
Medonic M32B
Portable Electronic Pipette
Mini 96
New
Anterior Nasal Specimen Collection Swabs
53-1195-TFS, 53-0100-TFS, 53-0101-TFS, 53-4582-TFS
New
Gold Member
Immunochromatographic Assay
CRYPTO Cassette
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: Colorectal cancer under the microscope (Photo courtesy of Adobe Stock)

Unique Microbial Fingerprint to Improve Diagnosis of Colorectal Cancer

Colorectal cancer is the fourth most common cancer in the UK and the second deadliest. New research has revealed that it carries a unique microbial fingerprint, which could help doctors better understand... Read more

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The VENTANA HER2 (4B5) test is now CE-IVDR approved (Photo courtesy of Roche)

Companion Diagnostic Test Identifies HER2-Ultralow Breast Cancer and Biliary Tract Cancer Patients

Breast cancer is the most common cancer in Europe, with more than 564,000 new cases and 145,000 deaths annually. Metastatic breast cancer is rising in younger populations and remains the leading cause... Read more

Technology

view channel
Image: Conceptual design of the CORAL capsule for microbial sampling in the small intestine (H. Mohammed et al., Device (2025). DOI: 10.1016/j.device.2025.100904)

Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine

The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.