We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

A. Menarini Diagnostics S.r.l.

A. Menarini Diagnostics S.r.l. is fully committed to developing high tech diagnostics instruments and reagents to imp... read more Featured Products: More products

Download Mobile App




Non-Invasive Prenatal Technology Accurately Detects Fetal Genomic Abnormalities from Maternal Blood Draw

By LabMedica International staff writers
Posted on 05 Jul 2024
Print article
Image: The cell based non-invasive prenatal technology demonstrated high resolution detection of fetal genomic abnormalities from a simple maternal blood draw (Photo courtesy of 123RF)
Image: The cell based non-invasive prenatal technology demonstrated high resolution detection of fetal genomic abnormalities from a simple maternal blood draw (Photo courtesy of 123RF)

A new study has demonstrated the effectiveness of an automated system in delivering fetal genomic profiles that closely match those obtained through genomic analysis using traditional invasive procedures.

In a comprehensive clinical validation study, Menarini Silicon Biosystems (Bologna, Italy) has shown that its fetal cell-based noninvasive prenatal screening (NIPT) technology could accurately identify fetal genome-wide pathogenic copy number variants larger than 400Kb and commonly screened trisomy conditions. The findings were part of a large multicenter study highlighting its next-generation NIPT that isolates fetal cells from maternal blood. The genomic assessment of these cells was highly consistent with results from invasive diagnostic procedures. Additionally, the test being developed by Menarini has shown promise in identifying genomic conditions that are difficult to detect with the current non-invasive screening technologies, which rely on cell-free DNA (cfDNA) analysis.

The study involved over 1,000 women and focused on extracting individual fetal (trophoblast) cells from maternal blood for analysis. It aimed to detect common trisomic conditions and genome-wide microdeletions and microduplications, known as pathogenic copy number variants (pCNVs), which are significant contributors to perinatal morbidity and mortality. The results indicated that Menarini’s fetal cell-based NIPT could provide insights beyond the basic trisomies detected by standard cfDNA analysis and could accurately identify genome-wide microdeletions and microduplications down to at least 400Kb. The performance of this cell-based test was benchmarked against chromosomal microarray analysis (CMA) and karyotype from chorionic villus sampling (CVS) or amniocentesis, which are the clinical gold-standard methods for detecting prenatal chromosomal abnormalities.

"Isolating intact fetal cells from maternal blood for prenatal screening has long been perceived as an extremely challenging goal,” said Thomas Musci, MD, Chief Medical Officer, Head of Menarini Silicon Biosystems' Reproductive Precision Medicine Business Unit. “Our highly automated system for the isolation and single–cell analysis of circulating extravillous trophoblasts (cEVTs) supports the feasibility of a cell–based NIPT for fetal genomic profiling that can lead to more informed decision-making at all levels."

Gold Member
Pharmacogenetics Panel
VeriDose Core Panel v2.0
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Silver Member
H-FABP Assay
Heart-Type Fatty Acid-Binding Protein Assay
New
Total Thyroxine Assay
Total Thyroxine CLIA Kit

Print article

Channels

Clinical Chemistry

view channel
Image: Professor Nicole Strittmatter (left) and first author Wei Chen stand in front of the mass spectrometer with a tissue sample (Photo courtesy of Robert Reich/TUM)

Mass Spectrometry Detects Bacteria Without Time-Consuming Isolation and Multiplication

Speed and accuracy are essential when diagnosing diseases. Traditionally, diagnosing bacterial infections involves the labor-intensive process of isolating pathogens and cultivating bacterial cultures,... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.