We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




New Molecular Test Detects More Cervical Cancer Cases

By LabMedica International staff writers
Posted on 06 Jun 2024
Print article
Image: Microscopic view of the HPV human papillomavirus that causes cervical cancer (credit: Adobe Stock Images)
Image: Microscopic view of the HPV human papillomavirus that causes cervical cancer (credit: Adobe Stock Images)

Cervical cancer screening is crucial for early detection and prevention. Many countries have comprehensive screening programs that begin with testing for various types of human papillomavirus (HPV), the virus responsible for cervical cancer. The traditional screening process involves a vaginal examination called a colposcopy if cell changes are detected. During a colposcopy, the gynecologist examines the cervix with a microscope and may take a biopsy if necessary. The biopsy, a surgical procedure, can result in negative pregnancy outcomes such as premature delivery. When an HPV-positive result is obtained, it is followed by cytological analysis, which involves examining gynecological cell samples under a microscope, relying on human interpretation. Researchers have now developed a simpler and more effective screening method for cervical cancer than the current one.

The WID-qCIN test, a new molecular test developed by researchers at Karolinska Institutet (Stockholm, Sweden) and the University of Innsbruck (Innsbruck, Austria), has the potential to replace cytological analysis. This test can automatically analyze epigenetic changes in cells, which are changes that influence which genes are active and which are not. Such changes can be affected by factors like the environment, lifestyle, and aging, and can raise the risk of cancer and other diseases. In a study involving more than 28,000 women over 30 who were screened in Stockholm between January and March 2017, the researchers used the WID-qCIN test along with a test for two high-risk HPV types (HPV 16 and 18) to analyze 2,377 HPV-positive samples. This method successfully detected 100% of all invasive cervical cancers and 93% of all serious precancerous lesions within a year of sampling.

Moreover, the new test, combined with the HPV 16/18 test, predicted 69% of all cancers and precancerous lesions up to six years after the sample was taken. In comparison, the current screening method predicts only 18%. In today's screening program, when cell changes are detected, a woman undergoes a vaginal examination (colposcopy), during which the gynecologist uses a microscope to look at the cervix and may take a biopsy if needed. This biopsy can lead to negative pregnancy outcomes, including premature delivery. The results of the recent study indicate that implementing the WID-qCIN test could reduce the number of colposcopy examinations by 40%. The study was published in Nature Medicine on June 4, 2024.

“By integrating the WID-qCIN test into our screening programs, we would be able to identify more cancer cases while reducing the need for invasive procedures,” said Joakim Dillner, Professor at Karolinska Institutet.

“With its simplicity and objective assessment, the WID-qCIN test can improve the effectiveness of these programs and support the global strategy to eliminate cervical cancer,” added Martin Widschwendter, Professor at the University of Innsbruck.

Related Links:
Karolinska Institutet
University of Innsbruck

Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Total Thyroxine Assay
Total Thyroxine CLIA Kit
New
FOB+Transferrin+Calprotectin+Lactoferrin Test
CerTest FOB+Transferrin+Calprotectin+Lactoferrin Combo Test

Print article

Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.