We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




New Genomic Method Helps Diagnose Patients with Unexplained Kidney Disease

By LabMedica International staff writers
Posted on 26 Mar 2024
Print article
Image: The new genomic method has huge implications for patients with kidney failure (Photo courtesy of Newcastle University)
Image: The new genomic method has huge implications for patients with kidney failure (Photo courtesy of Newcastle University)

Kidney failure poses a significant threat to life if not adequately treated, yet precise diagnosis often eludes patients, leaving them uncertain about the best treatment approach. Now, a groundbreaking advancement by scientists has led to the discovery of a new technique for examining genomic data that could offer an accurate diagnosis for those suffering from unexplained kidney failure.

Researchers from Newcastle University (Newcastle upon Tyne, UK) used data from the Genomics England 100,000 Genomes Project to establish a diagnosis for patients facing unexplained kidney failure. They discovered that certain segments of these patients' genomes were absent, as a result of which their conditions went undiagnosed with standard genetic analysis techniques. The researchers have now identified this missing gene and found the mutations within it, allowing them to classify this as NPHP1-related -related kidney failure.

For their study, the team reviewed the genetic sequencing data of 959 individuals with advanced kidney disease. They identified 11 patients with a deleted region genome, resulting in the total loss of a specific kidney gene, a factor that had previously gone unnoticed. This novel method was further applied to analyze the genomic data of 11,754 individuals, enabling the genetic diagnoses of 10 UK patients with unexplained deafness and blindness, conditions that had remained genetically unexplainable until now. The Newcastle team is extending their research to patient-derived cell lines to delve deeper into the disease process and explore potential therapeutic options.

“Our new genomic methods and their results has huge implications for the patients and families with kidney failure who were previously genetically unsolved,” said Professor John Sayer, Deputy Dean of Biosciences at Newcastle University. “What we are now able to do is give some patients a precise diagnosis, which allows their investigations, treatment and management to be tailored to their needs for the best possible outcomes.”

Related Links:
Newcastle University

New
Platinum Member
Flu SARS-CoV-2 Combo Test
OSOM® Flu SARS-CoV-2 Combo Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Magnetic Bead Separation Modules
MAG and HEATMAG

Print article
77 ELEKTRONIKA

Channels

Clinical Chemistry

view channel
Image: PhD student and first author Tarek Eissa has analyzed thousands of molecular fingerprints (Photo courtesy of Thorsten Naeser / MPQ / Attoworld)

Screening Tool Detects Multiple Health Conditions from Single Blood Drop

Infrared spectroscopy, a method using infrared light to study the molecular composition of substances, has been a foundational tool in chemistry for decades, functioning similarly to a molecular fingerprinting... Read more

Hematology

view channel
Image: The Truvian diagnostic platform combines clinical chemistry, immunoassay and hematology testing in a single run (Photo courtesy of Truvian Health)

Automated Benchtop System to Bring Blood Testing To Anyone, Anywhere

Almost all medical decisions are dependent upon laboratory test results, which are essential for disease prevention and the management of chronic illnesses. However, routine blood testing remains limited worldwide.... Read more

Immunology

view channel
Image: The blood test measures lymphocytes  to guide the use of multiple myeloma immunotherapy (Photo courtesy of 123RF)

Simple Blood Test Identifies Multiple Myeloma Patients Likely to Benefit from CAR-T Immunotherapy

Multiple myeloma, a type of blood cancer originating from plasma cells in the bone marrow, sees almost all patients experiencing a relapse at some stage. This means that the cancer returns even after initially... Read more

Microbiology

view channel
Image: Ultra-Rapid Antimicrobial Susceptibility Testing (uRAST) revolutionizing traditional antibiotic susceptibility testing (Photo courtesy of Seoul National University)

Ultra-Rapid Culture-Free Sepsis Test Reduces Testing Time from Days to Hours

Sepsis, a critical emergency condition, results from an overactive inflammatory response to pathogens like bacteria or fungi in the blood, leading to organ damage and the possibility of sudden death.... Read more

Pathology

view channel
Image: The AI model can distinguish different stages of DCIS from inexpensive and readily available breast tissue images (Photo courtesy of David A. Litman/Shutterstock)

AI Model Identifies Breast Tumor Stages Likely To Progress to Invasive Cancer

Ductal carcinoma in situ (DCIS) is a non-invasive type of tumor that can sometimes progress to a more lethal form of breast cancer and represents about 25% of all breast cancer cases. Between 30% and 50%... Read more

Industry

view channel
Image: Beckman Coulter will utilize the ALZpath pTau217 antibody to detect key biomarker for Alzheimer\'s disease on its DxI 9000 immunoassay analyzer (Photo courtesy of Beckman Coulter)

Beckman Coulter Licenses Alzpath's Proprietary P-tau 217 Antibody to Develop Alzheimer's Blood Test

Cognitive assessments have traditionally been the primary method for diagnosing Alzheimer’s disease, but this approach has its limitations as symptoms become apparent only after significant brain changes... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.