We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




New Liquid Biopsy Approach Improves Blood Tests’ Ability to Detect Circulating Tumor DNA

By LabMedica International staff writers
Posted on 22 Jan 2024
Print article
Image: MIT researchers have improved the ability of blood tests to detect and monitor cancer (Photo courtesy of 123RF)
Image: MIT researchers have improved the ability of blood tests to detect and monitor cancer (Photo courtesy of 123RF)

Tumors continuously release DNA from dying cells into the bloodstream, which is rapidly broken down. This makes it difficult for existing blood tests to detect the minute amounts of tumor DNA present at any given time. Now, a team of researchers has developed an innovative method to amplify the detection of tumor DNA in blood, a breakthrough that could enhance cancer diagnosis and treatment monitoring.

Researchers at Massachusetts Institute of Technology (MIT, Cambridge, MA, USA) have created "priming agents," injectable molecules that temporarily slow the clearance of circulating tumor DNA from the bloodstream. These priming agents target the body’s two main mechanisms for removing circulating DNA: DNases, enzymes that break down DNA in the blood, and macrophages, immune cells that absorb cell-free DNA during blood filtration through the liver. The researchers developed two types of priming agents. The first is a monoclonal antibody that attaches to circulating DNA, shielding it from DNases. The second type is a nanoparticle designed to prevent macrophages from absorbing cell-free DNA, utilizing the cells’ tendency to ingest synthetic nanoparticles. After injecting these agents, the DNA levels in the bloodstream rise for one to two hours before normalizing within about 24 hours.

In experiments with mice transplanted with lung-tumor-inducing cancer cells, the researchers demonstrated that these priming agents could increase the amount of recoverable circulating tumor DNA in a blood sample by up to 60-fold. Once collected, these blood samples can undergo the same sequencing tests used in liquid biopsy samples, identifying tumor DNA and specific sequences that indicate tumor types and potential treatments. The priming agents also show promise in early cancer detection. In mice with a low cancer burden, using the nanoparticle priming agent before drawing blood allowed the detection of circulating tumor DNA in 75% of the mice, a significant improvement compared to undetectable levels without the priming agents.

“A tumor is always creating new cell-free DNA, and that’s the signal that we’re attempting to detect in the blood draw. Existing liquid biopsy technologies, however, are limited by the amount of material you collect in the tube of blood,” said J. Christopher Love, the Raymond A. and Helen E. St. Laurent Professor of Chemical Engineering at MIT. “Where this work intercedes is thinking about how to inject something beforehand that would help boost or enhance the amount of signal that is available to collect in the same small sample.”

“One of the greatest hurdles for cancer liquid biopsy testing has been the scarcity of circulating tumor DNA in a blood sample,” added Viktor Adalsteinsson, director of the Gerstner Center for Cancer Diagnostics at the Broad Institute. “It’s thus been encouraging to see the magnitude of the effect we’ve been able to achieve so far and to envision what impact this could have for patients.”

Related Links:
MIT

New
Platinum Member
Flu SARS-CoV-2 Combo Test
OSOM® Flu SARS-CoV-2 Combo Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
All-in-one Molecular Diagnosis System
Panall 8000

Print article
77 ELEKTRONIKA

Channels

Clinical Chemistry

view channel
Image: PhD student and first author Tarek Eissa has analyzed thousands of molecular fingerprints (Photo courtesy of Thorsten Naeser / MPQ / Attoworld)

Screening Tool Detects Multiple Health Conditions from Single Blood Drop

Infrared spectroscopy, a method using infrared light to study the molecular composition of substances, has been a foundational tool in chemistry for decades, functioning similarly to a molecular fingerprinting... Read more

Hematology

view channel
Image: The Truvian diagnostic platform combines clinical chemistry, immunoassay and hematology testing in a single run (Photo courtesy of Truvian Health)

Automated Benchtop System to Bring Blood Testing To Anyone, Anywhere

Almost all medical decisions are dependent upon laboratory test results, which are essential for disease prevention and the management of chronic illnesses. However, routine blood testing remains limited worldwide.... Read more

Immunology

view channel
Image: The blood test measures lymphocytes  to guide the use of multiple myeloma immunotherapy (Photo courtesy of 123RF)

Simple Blood Test Identifies Multiple Myeloma Patients Likely to Benefit from CAR-T Immunotherapy

Multiple myeloma, a type of blood cancer originating from plasma cells in the bone marrow, sees almost all patients experiencing a relapse at some stage. This means that the cancer returns even after initially... Read more

Microbiology

view channel
Image: Ultra-Rapid Antimicrobial Susceptibility Testing (uRAST) revolutionizing traditional antibiotic susceptibility testing (Photo courtesy of Seoul National University)

Ultra-Rapid Culture-Free Sepsis Test Reduces Testing Time from Days to Hours

Sepsis, a critical emergency condition, results from an overactive inflammatory response to pathogens like bacteria or fungi in the blood, leading to organ damage and the possibility of sudden death.... Read more

Pathology

view channel
Image: The AI model can distinguish different stages of DCIS from inexpensive and readily available breast tissue images (Photo courtesy of David A. Litman/Shutterstock)

AI Model Identifies Breast Tumor Stages Likely To Progress to Invasive Cancer

Ductal carcinoma in situ (DCIS) is a non-invasive type of tumor that can sometimes progress to a more lethal form of breast cancer and represents about 25% of all breast cancer cases. Between 30% and 50%... Read more

Industry

view channel
Image: Beckman Coulter will utilize the ALZpath pTau217 antibody to detect key biomarker for Alzheimer\'s disease on its DxI 9000 immunoassay analyzer (Photo courtesy of Beckman Coulter)

Beckman Coulter Licenses Alzpath's Proprietary P-tau 217 Antibody to Develop Alzheimer's Blood Test

Cognitive assessments have traditionally been the primary method for diagnosing Alzheimer’s disease, but this approach has its limitations as symptoms become apparent only after significant brain changes... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.