We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Automated Liquid Biopsy Detects Brain Tumor Cells in Children

By LabMedica International staff writers
Posted on 02 Jan 2024

Brain and other central nervous system (CNS) cancers are the primary cause of cancer-related deaths in children, ranking as the second most prevalent form of childhood cancer following leukemia. More...

For treating CNS tumors, healthcare professionals traditionally rely on a series of magnetic resonance imaging (MRI) scans to gauge the effectiveness of treatments such as surgery, chemotherapy, and radiation. However, MRI scans have limitations, particularly in detecting microscopic diseases that might signal residual or recurring cancer cells. To bridge this gap, scientists have been on a quest to identify reliable, tumor-specific biomarkers. Prior research in adults has demonstrated that primary tumors release circulating tumor cells (CTCs) into the bloodstream, suggesting that CTCs could serve as dependable biomarkers for CNS tumors.

A recent study conducted by researchers at the University of Texas MD Anderson Cancer Center (Houston, TX, USA) aimed to determine the effectiveness of a liquid biopsy tool designed to detect vimentin, a structural protein present on the surface of many cancer cells, in capturing and isolating CTCs from the blood samples of children with CNS tumors. The study also aimed to assess whether an automated version of the CTC capture method would enhance their previously established manual technique. The liquid biopsy method employed in this study isolates cells exhibiting cell-surface vimentin (CSV) to segregate CTCs from the patient's blood, offering insights into the patient's cancer and the progress of their treatment. Previous findings indicated the efficacy of the manual liquid biopsy approach in identifying CTCs across various cancers in adults.

The goal of the study was to automate the process to increase its sensitivity and the capture of CTCs from CNS tumors. The study involved 62 participants, including 58 children diagnosed with CNS tumors and four healthy adolescents serving as a comparison group. The team collected blood samples from all participants to isolate and capture tumor cells. After eliminating denser cells unlikely to contain CTCs, the samples were processed through a machine fitted with a microchip coated with an antibody that recognizes CSV. This coating allowed CTCs to adhere to the chip while other cells were washed away. The adhered cells were then stained for counting and identification.

The automated method was successful in capturing CTCs in 50 out of the 58 pediatric patients (86%). The study found no significant variation in CTC detection based on patient demographics or cancer therapy. The automated CSV-CTC capture tool proved highly accurate in identifying patients with and without CNS tumor cells. Furthermore, when compared to the prior manual process, the automated method enhanced the sensitivity of CTC detection by approximately 10% and reduced the time required for sample processing. The researchers also sought to detect a specific mutation linked to poorer outcomes in patients with midline gliomas, successfully identifying it in 75% of the samples. While further extensive research is necessary to corroborate these findings, the detection of CTCs in patients with CNS tumors holds promise as a tool for confirming diagnoses of inoperable or difficult-to-biopsy tumors like brainstem gliomas and optic pathway gliomas.

“This is the first study to demonstrate the detection of CTCs using CSV as a biomarker in pediatric CNS tumors, including ones that are malignant and have metastasized,” said Shulin Li, Ph.D., principal investigator of this study and professor of pediatrics at UT Anderson Cancer Center.

“This study also showed the value of automating the CSV-CTC capture process with a microchip. This tool could make it easier to monitor patients’ response to treatment and identify cancer relapse earlier,” added Shawn Mulvaney, Ph.D., a health science administrator in the NIBIB Division of Applied Science & Technology (Bioimaging).

Related Links:
MD Anderson Cancer Center


Gold Member
Hybrid Pipette
SWITCH
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Alcohol Testing Device
Dräger Alcotest 7000
New
Gold Member
Ketosis and DKA Test
D-3-Hydroxybutyrate (Ranbut) Assay
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: Residual leukemia cells may predict long-term survival in acute myeloid leukemia (Photo courtesy of Shutterstock)

MRD Tests Could Predict Survival in Leukemia Patients

Acute myeloid leukemia is an aggressive blood cancer that disrupts normal blood cell production and often relapses even after intensive treatment. Clinicians currently lack early, reliable markers to predict... Read more

Immunology

view channel
Image: The simple blood marker can predict which lymphoma patients will benefit most from CAR T-cell therapy (Photo courtesy of Shutterstock)

Routine Blood Test Can Predict Who Benefits Most from CAR T-Cell Therapy

CAR T-cell therapy has transformed treatment for patients with relapsed or treatment-resistant non-Hodgkin lymphoma, but many patients eventually relapse despite an initial response. Clinicians currently... Read more

Pathology

view channel
Image: Determining EG spiked into medicinal syrups: Zoomed-in images of the pads on the strips are shown. The red boxes show where the blue color on the pad could be seen when visually observed (Arman, B.Y., Legge, I., Walsby-Tickle, J. et al. https://doi.org/10.1038/s41598-025-26670-1)

Rapid Low-Cost Tests Can Prevent Child Deaths from Contaminated Medicinal Syrups

Medicinal syrups contaminated with toxic chemicals have caused the deaths of hundreds of children worldwide, exposing a critical gap in how these products are tested before reaching patients.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.