We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Automated Device for Non-Invasive Measurement of Cells’ Electrical Properties to Advance Cancer Diagnosis

By LabMedica International staff writers
Posted on 12 Dec 2023

Effective monitoring of cancer cells is crucial for physicians in guiding treatment and managing the disease, potentially reducing cancer-related mortality. More...

Non-invasive diagnostic platforms that measure the electrical properties of cancer cells show promise for early detection of drug resistance and metastasis in cancer. Earlier studies have found that the type of cancer and its drug resistance status can be understood from cellular permittivity and conductivity data. As a result, there is a growing need for analytical methods that can quickly measure these electrical properties of cells. Electrorotation (ROT) is one method that can capture these cellular properties by analyzing permittivity and conductivity based on how a cell moves in an electric field. This method characterizes cell types and states by profiling their frequency-dependent rotational movement under a modulated electric field. However, traditional ROT methods have limitations, primarily the cumbersome process of capturing, measuring, and replacing cells, which reduces the throughput – the number of cells analyzed over time.

To overcome these challenges, researchers from Tokyo University of Science (TUS, Tokyo, Japan) have developed a continuous flow ROT (cROT) system that incorporates microfluidics to continuously measure cellular dynamics while simultaneously capturing cells on a single device. The researchers designed the device with interdigitating electrodes to induce cell rotation and included a microchannel for cell passage. The geometry of these electrodes enhances the number of cells analyzed and reduces the time needed for cell replacement as measurements are collected. The electric field within the microchannel allows for the analysis of rotational behavior from a continuous flow of cells, boosting the automated system's throughput.

In validation studies, the cROT device significantly outperformed traditional ROT platforms in terms of throughput. While conventional ROT methods process about 10 to 20 cells per hour, the cROT system can handle up to 2700 cells per hour, a more than 100-fold increase. Additionally, it greatly reduces the time needed for cell replacement. Other benefits include the system's high level of automation and its ease of installation or removal. The researchers expect the rapid and accurate analyses enabled by this innovative method to drive significant progress in cancer drug development, diagnostics, and new cell-based therapies. This groundbreaking technology paves the way for collaborations and adoption by key players in the oncology field, potentially transforming cancer treatment strategies.

"With our cROT technique, we've unlocked the ability to delve into the subtle intricacies of single-cell dynamics, including aspects like cell physiology, the state of the cell membrane, and the concentration of intracellular ions," said Dr. Masahiro Motosuke, a Professor in the Department of Mechanical Engineering at TUS and the project's Principal Investigator.

Related Links:
TUS


Gold Member
Pharmacogenetics Panel
VeriDose Core Panel v2.0
3-Part Differential Hematology Analyzer
Swelab Alfa Plus Sampler
New
Glucose Tolerance Test
NERL Trutol
New
Silver Member
Luteinizing Hormone Test
Luteinizing Hormone (LH) Rapid Test
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: The tip optofluidic immunoassay platform enables rapid, multiplexed antibody profiling using only 1 μL of fingertip blood (Photo courtesy of hLife, DOI:10.1016/j.hlife.2025.04.005)

POC Diagnostic Platform Performs Immune Analysis Using One Drop of Fingertip Blood

As new COVID-19 variants continue to emerge and individuals accumulate complex histories of vaccination and infection, there is an urgent need for diagnostic tools that can quickly and accurately assess... Read more

Microbiology

view channel
Image: The U.S. FDA-cleared IntelliSep rapid host response diagnostic represents a breakthrough in sepsis care (Photo courtesy of Cytovale)

Rapid Diagnostic Test Slashes Sepsis Mortality by 39%

Sepsis remains one of the most challenging and fatal conditions in contemporary healthcare, accounting for nearly one-third of all hospital-related deaths in the United States. In emergency departments... Read more

Industry

view channel
Image: The knowledge transfer partnership will further develop technology to rapidly diagnose serious and high-risk infectious diseases (Photo courtesy of Aston University)

Aston University and BG Research Partner to Commercialize Groundbreaking Medical Diagnostic

Technology that can rapidly diagnose high-consequence infectious diseases will take a major step forward towards commercialization, thanks to a new partnership. A Knowledge Transfer Partnership (KTP)... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.