Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




New Assay to Revolutionize Detection and Treatment of Acute Myeloid Leukemia

By LabMedica International staff writers
Posted on 22 Nov 2023

Acute myeloid leukemia (AML), a rare and aggressive form of blood cancer, is diagnosed in approximately 120,000 people globally each year. More...

Effective management of AML heavily depends on the ability to detect residual disease during treatment, which is crucial for determining prognosis and guiding therapy. Current techniques for detecting measurable residual disease (MRD) in AML include bone marrow morphology, multiparameter flow cytometry (MPFC), and DNA sequencing. However, each of these methods has limitations. Morphological assessment can only detect leukemic cells at a limit of 5%, whereas MPFC, though more sensitive with a detection limit between 0.01% and 0.001%, is complex and lacks standardization across labs. DNA sequencing can identify leukemic cells via somatic mutations but is expensive and may be affected by clonal hematopoiesis in non-leukemic cells. Now, researchers have introduced a groundbreaking assay that detects a unique molecular marker in AML patients and could transform detection and treatment.

Developed by a team at Washington University School of Medicine in St. Louis (WUSTL, St. Louis, MO, USA), this new assay specifically targets AML cases with KMT2A gene fusions, potentially revolutionizing the way AML is detected and managed. The team has developed a droplet digital PCR assay for sensitive detection of KMT2A fusion with its five most common fusion partners – AF9, AF6, AF4, ELL, and ENL. These partners account for approximately 80% of KMT2A fusions, although there are over 80 known KMT2A fusion partners.

The assay was thoroughly tested in human cell lines and patient samples, showing its capability for sensitive and specific detection of KMT2A fusions. It operates by segregating cDNA molecules into microfluidic droplets, which are then analyzed using specific primers and probes. These only generate a positive signal in the presence of fusion transcripts. The researchers successfully integrated various primer/probe sets to detect multiple fusions simultaneously with a pooled fusion detection reagent. Additionally, the assay was proven to effectively identify KMT2A fusions in patient samples known to contain these fusions.

“This is a robust new tool for sensitive KMT2A fusion detection that is directly applicable for disease detection in patients with leukemia driven by these fusions,” said lead investigator Grant A. Challen, PhD, Division of Oncology, Department of Medicine, Washington University School of Medicine in St. Louis. “It fills a void for oncogenic fusion detection and provides some technical improvements. The assay is also scalable—additional fusions can be easily added to the assay—to expand coverage for other oncogenic fusions. We are improving blood cancer detection one drop at a time!”

Related Links:
WUSTL 


New
Gold Member
Automatic Hematology Analyzer
DH-800 Series
Collection and Transport System
PurSafe Plus®
New
Autoimmune Liver Diseases Assay
Microblot-Array Liver Profile Kit
Specimen Radiography System
TrueView 200 Pro
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The study highlights the potential of cCAFs as a biomarker for early diagnosis and prognosis (H J Woo et al., Analytical Chemistry (2025). DOI: 10.1021/acs.analchem.5c02154)

Simultaneous Cell Isolation Technology Improves Cancer Diagnostic Accuracy

Accurate cancer diagnosis remains a challenge, as liquid biopsy techniques often fail to capture the complexity of tumor biology. Traditional systems for isolating circulating tumor cells (CTCs) vary in... Read more

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The VENTANA HER2 (4B5) test is now CE-IVDR approved (Photo courtesy of Roche)

Companion Diagnostic Test Identifies HER2-Ultralow Breast Cancer and Biliary Tract Cancer Patients

Breast cancer is the most common cancer in Europe, with more than 564,000 new cases and 145,000 deaths annually. Metastatic breast cancer is rising in younger populations and remains the leading cause... Read more

Technology

view channel
Image: Conceptual design of the CORAL capsule for microbial sampling in the small intestine (H. Mohammed et al., Device (2025). DOI: 10.1016/j.device.2025.100904)

Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine

The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.