We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




New Assay to Revolutionize Detection and Treatment of Acute Myeloid Leukemia

By LabMedica International staff writers
Posted on 22 Nov 2023
Print article
Image: A novel assay can detect a unique molecular marker in patients with acute myeloid leukemia (Photo courtesy of WUSTL)
Image: A novel assay can detect a unique molecular marker in patients with acute myeloid leukemia (Photo courtesy of WUSTL)

Acute myeloid leukemia (AML), a rare and aggressive form of blood cancer, is diagnosed in approximately 120,000 people globally each year. Effective management of AML heavily depends on the ability to detect residual disease during treatment, which is crucial for determining prognosis and guiding therapy. Current techniques for detecting measurable residual disease (MRD) in AML include bone marrow morphology, multiparameter flow cytometry (MPFC), and DNA sequencing. However, each of these methods has limitations. Morphological assessment can only detect leukemic cells at a limit of 5%, whereas MPFC, though more sensitive with a detection limit between 0.01% and 0.001%, is complex and lacks standardization across labs. DNA sequencing can identify leukemic cells via somatic mutations but is expensive and may be affected by clonal hematopoiesis in non-leukemic cells. Now, researchers have introduced a groundbreaking assay that detects a unique molecular marker in AML patients and could transform detection and treatment.

Developed by a team at Washington University School of Medicine in St. Louis (WUSTL, St. Louis, MO, USA), this new assay specifically targets AML cases with KMT2A gene fusions, potentially revolutionizing the way AML is detected and managed. The team has developed a droplet digital PCR assay for sensitive detection of KMT2A fusion with its five most common fusion partners – AF9, AF6, AF4, ELL, and ENL. These partners account for approximately 80% of KMT2A fusions, although there are over 80 known KMT2A fusion partners.

The assay was thoroughly tested in human cell lines and patient samples, showing its capability for sensitive and specific detection of KMT2A fusions. It operates by segregating cDNA molecules into microfluidic droplets, which are then analyzed using specific primers and probes. These only generate a positive signal in the presence of fusion transcripts. The researchers successfully integrated various primer/probe sets to detect multiple fusions simultaneously with a pooled fusion detection reagent. Additionally, the assay was proven to effectively identify KMT2A fusions in patient samples known to contain these fusions.

“This is a robust new tool for sensitive KMT2A fusion detection that is directly applicable for disease detection in patients with leukemia driven by these fusions,” said lead investigator Grant A. Challen, PhD, Division of Oncology, Department of Medicine, Washington University School of Medicine in St. Louis. “It fills a void for oncogenic fusion detection and provides some technical improvements. The assay is also scalable—additional fusions can be easily added to the assay—to expand coverage for other oncogenic fusions. We are improving blood cancer detection one drop at a time!”

Related Links:
WUSTL 

New
Platinum Member
Flu SARS-CoV-2 Combo Test
OSOM® Flu SARS-CoV-2 Combo Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay

Print article
77 ELEKTRONIKA

Channels

Clinical Chemistry

view channel
Image: PhD student and first author Tarek Eissa has analyzed thousands of molecular fingerprints (Photo courtesy of Thorsten Naeser / MPQ / Attoworld)

Screening Tool Detects Multiple Health Conditions from Single Blood Drop

Infrared spectroscopy, a method using infrared light to study the molecular composition of substances, has been a foundational tool in chemistry for decades, functioning similarly to a molecular fingerprinting... Read more

Hematology

view channel
Image: The Truvian diagnostic platform combines clinical chemistry, immunoassay and hematology testing in a single run (Photo courtesy of Truvian Health)

Automated Benchtop System to Bring Blood Testing To Anyone, Anywhere

Almost all medical decisions are dependent upon laboratory test results, which are essential for disease prevention and the management of chronic illnesses. However, routine blood testing remains limited worldwide.... Read more

Immunology

view channel
Image: The blood test measures lymphocytes  to guide the use of multiple myeloma immunotherapy (Photo courtesy of 123RF)

Simple Blood Test Identifies Multiple Myeloma Patients Likely to Benefit from CAR-T Immunotherapy

Multiple myeloma, a type of blood cancer originating from plasma cells in the bone marrow, sees almost all patients experiencing a relapse at some stage. This means that the cancer returns even after initially... Read more

Microbiology

view channel
Image: Ultra-Rapid Antimicrobial Susceptibility Testing (uRAST) revolutionizing traditional antibiotic susceptibility testing (Photo courtesy of Seoul National University)

Ultra-Rapid Culture-Free Sepsis Test Reduces Testing Time from Days to Hours

Sepsis, a critical emergency condition, results from an overactive inflammatory response to pathogens like bacteria or fungi in the blood, leading to organ damage and the possibility of sudden death.... Read more

Pathology

view channel
Image: The AI model can distinguish different stages of DCIS from inexpensive and readily available breast tissue images (Photo courtesy of David A. Litman/Shutterstock)

AI Model Identifies Breast Tumor Stages Likely To Progress to Invasive Cancer

Ductal carcinoma in situ (DCIS) is a non-invasive type of tumor that can sometimes progress to a more lethal form of breast cancer and represents about 25% of all breast cancer cases. Between 30% and 50%... Read more

Industry

view channel
Image: Beckman Coulter will utilize the ALZpath pTau217 antibody to detect key biomarker for Alzheimer\'s disease on its DxI 9000 immunoassay analyzer (Photo courtesy of Beckman Coulter)

Beckman Coulter Licenses Alzpath's Proprietary P-tau 217 Antibody to Develop Alzheimer's Blood Test

Cognitive assessments have traditionally been the primary method for diagnosing Alzheimer’s disease, but this approach has its limitations as symptoms become apparent only after significant brain changes... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.