Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




AI-Based Tool Uses Tumor Gene Sequencing Data to Identify Site of Origin for Enigmatic Cancers

By LabMedica International staff writers
Posted on 08 Aug 2023

For a small segment of cancer patients, the origin of their cancer remains undetermined, making it challenging to select the most effective treatment. More...

This is because most cancer medications are designed for distinct types of cancer. Researchers have now developed a new methodology, utilizing machine learning, to pinpoint the origins of these elusive cancers. This computational model evaluates the sequences of roughly 400 genes to predict a tumor's site of origin. In a dataset comprising about 900 patients, the model was able to accurately categorize 40% of untraceable tumors, thus potentially increasing the number of patients eligible for genomically guided, targeted treatment by 2.2 times.

In 3 to 5% of cancer cases, especially when tumors have metastasized across the body, determining the initial site where the cancer originated is a challenge. These tumors are termed as cancers of unknown primary (CUP). The inability to determine their origin hampers the administration of "precision" drugs, which are tailored for specific cancer types. These precision medications are not only more effective but also have fewer side effects than the more general treatments often prescribed to CUP patients. To address this issue, researchers from the Massachusetts Institute of Technology (MIT, Cambridge, MA, USA) and Dana-Farber Cancer Institute (Boston, MA, USA) analyzed routinely collected genetic data from Dana-Farber to predict cancer types. This data consisted of gene sequences for about 400 genes that are frequently mutated in cancer cases. Using this data, a machine-learning model was trained on nearly 30,000 patients diagnosed with one of 22 known cancer types.

When this model, termed OncoNPC, was tested on 7,000 tumors that it had never seen before but whose site of origin was known, it predicted their origins with an astounding 80% accuracy, which increased to 95% for tumors with high-confidence predictions which constituted about 65% of the total. This model was then applied to around 900 CUP tumors from Dana-Farber. For 40% of these tumors, the model delivered high-confidence origin predictions. Further, when the model's forecasts were corroborated against germline (inherited) mutations in some tumors with available data, the team found that the model’s predictions often matched the type of cancer most strongly predicted by the germline mutations than any other type of cancer.

The model's accuracy was further validated by comparing CUP patients' survival time against the typical prognosis for the type of cancer predicted by the model. For instance, CUP patients predicted to have a grimmer prognosis, like pancreatic cancer, indeed had comparatively shorter survival times, while those predicted to have a more favorable prognosis, such as neuroendocrine tumors, lived longer. Additionally, 10% of the studied CUP patients received a targeted treatment based on oncological speculation. Among these, those treated in line with the model's predictions had better outcomes. The researchers also examined if the model’s predictions could be useful based on the types of treatments that CUP patients analyzed in the study had received. Around 10% of these patients had received targeted treatment, based on their oncologists’ best guess about where their cancer had originated. Among these patients, those who received treatment consistent with the type of cancer predicted by the model for them fared better than patients who received a treatment generally administered for a different type of cancer than what the model predicted for them.

Furthermore, the researchers used the model to identify an additional 15% of patients (a 2.2-fold increase) who could have benefited from targeted treatments if their cancer's origin had been known. Sadly, they were treated with general chemotherapy drugs. The team is now keen on expanding their model to incorporate varied data types, like pathology and radiology images, to provide a more comprehensive prediction using multiple data modalities. This would also provide the model with a comprehensive perspective of tumors, allowing it to predict the tumor type as well as the most appropriate treatment.

“That was the most important finding in our paper, that this model could be potentially used to aid treatment decisions, guiding doctors toward personalized treatments for patients with cancers of unknown primary origin,” said Intae Moon, an MIT graduate student in electrical engineering and computer science who was the lead author of the new study.

Related Links:
MIT
Dana-Farber Cancer Institute 


Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Collection and Transport System
PurSafe Plus®
New
Gram-Negative Blood Culture Assay
LIAISON PLEX Gram-Negative Blood Culture Assay
New
Gold Member
Cardiovascular Risk Test
Metabolic Syndrome Array I & II
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The VENTANA HER2 (4B5) test is now CE-IVDR approved (Photo courtesy of Roche)

Companion Diagnostic Test Identifies HER2-Ultralow Breast Cancer and Biliary Tract Cancer Patients

Breast cancer is the most common cancer in Europe, with more than 564,000 new cases and 145,000 deaths annually. Metastatic breast cancer is rising in younger populations and remains the leading cause... Read more

Technology

view channel
Image: Conceptual design of the CORAL capsule for microbial sampling in the small intestine (H. Mohammed et al., Device (2025). DOI: 10.1016/j.device.2025.100904)

Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine

The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.