We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Study Explores MicroRNA Signatures to Detect and Classify Several Prominent Cancers

By LabMedica International staff writers
Posted on 02 Aug 2023

Cancer remains one of the world's most devastating diseases. More...

As the medical community strives to enhance diagnostic tools, microRNAs, or miRNAs, have taken center stage in biomedical research. These small non-coding ribonucleic acids (RNAs) play a crucial role in all biological functions, primarily gene regulation. Consequently, miRNAs oversee various biological and pathological processes, including cancer formation and progression. The close link between miRNAs and many cancers has led to an increased interest in using miRNA expression profiling data for non-invasive early detection. Machine learning has proven to be instrumental in creating high-performance pan-cancer classification models and identifying potential novel miRNA biomarkers for clinical investigation. However, it's crucial to understand how these data science methodologies relate to known biological processes to better integrate them into clinical settings.

Researchers from Florida Atlantic University (FAU, Boca Raton, FL, USA) further investigated the potential of miRNAs as biomarkers for cancer classification and enhancing clinical classification applications. They have developed a multiclass cancer diagnostic model using miRNA expression profiles through an iterative process that applied multiple techniques to an expanding dataset of miRNA expression quantification data. The study involved assessing how top miRNA features selected by machine learning models correlate with clinically and biologically verified miRNA biomarkers. Using Support Vector Machine and Random Forest machine learning models, they developed cancer classification models and progressively added more cancer classes to the multiclass models. The study analyzed the relationship between relevant miRNAs identified through feature selection and the classification models' performance metrics across 20 iterations, each incorporating another primary sample site, thereby increasing the types of cancer included.

The researchers studied the changes in success metrics as more cancer types were added, how the 20-miRNA signature evolved with the inclusion of more cancer types, and the overall characteristics of the full dataset using principal component analysis, a well-established technique for analyzing large datasets with numerous dimensions or features. This study differs from earlier ones focusing on miRNA feature signatures for a final multiclass dataset as it tracked changes in clinical and biological relevance with each addition of a cancerous tissue type. The study's findings suggest that models with more cancer classes shift toward focusing on cancer-diverse miRNAs of greater relevance with characterized functionality. The study implies that miRNAs might be highly unique to particular cancerous tissues and could serve as strong biomarkers for detection and classification. However, the study noted that the current verified biomarkers fall toward more cancer-wide miRNAs when detecting cancer.

The study offers insights into possible relationships between the overall clinical relevance of the feature extraction signature and the models' success metrics. It demonstrates the feasibility of using a multi-tissue miRNA cancer signature as a generalizable signature for single-class cancer detection in various prevalent cancers. The findings revealed that although the performance metrics decreased as the number of cancer classes increased, the percentage relevance of the miRNA feature selection signature increased marginally before stabilizing. Also, after performing principal component analysis, non-cancer tissues from all samples showed very similar expression visualizations, whereas all cancerous tissues had unique profiles.

“MicroRNAs have significant promise for future diagnostic tests because they can be detected directly from biological fluids such as blood, urine or saliva as well as the availability of high-quality measurement techniques for miRNAs,” said Oneeb Rehman, corresponding author and a Ph.D. candidate in the Department of Electrical Engineering and Computer Science within FAU’s College of Engineering and Computer Science. “This makes understanding and characterizing the biological basis behind potential miRNA classification tools crucial for integration into clinical environments.”

Related Links:
FAU


New
Gold Member
Automatic CLIA Analyzer
Shine i9000
Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Gel Cards
DG Gel Cards
Clinical Chemistry System
P780
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: Research has linked platelet aggregation in midlife blood samples to early brain markers of Alzheimer’s (Photo courtesy of Shutterstock)

Platelet Activity Blood Test in Middle Age Could Identify Early Alzheimer’s Risk

Early detection of Alzheimer’s disease remains one of the biggest unmet needs in neurology, particularly because the biological changes underlying the disorder begin decades before memory symptoms appear.... Read more

Microbiology

view channel
Image: Development of targeted therapeutics and diagnostics for extrapulmonary tuberculosis at University Hospital Cologne (Photo courtesy of Michael Wodak/Uniklinik Köln)

Blood-Based Molecular Signatures to Enable Rapid EPTB Diagnosis

Extrapulmonary tuberculosis (EPTB) remains difficult to diagnose and treat because it spreads beyond the lungs and lacks easily accessible biomarkers. Despite TB infecting 10 million people yearly, the... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.