We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Events

ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.

New Liquid Biopsy Approach 30% More Sensitive in Detecting Tumor DNA in Blood

By LabMedica International staff writers
Posted on 18 May 2023
Print article
Image: The novel ctDNA-based approach was developed by a research team co-led by VHIO’s Rodrigo A. Toledo (Photo courtesy of VHIO)
Image: The novel ctDNA-based approach was developed by a research team co-led by VHIO’s Rodrigo A. Toledo (Photo courtesy of VHIO)

Pancreatic cancer ranks as the seventh most common cause of cancer-related deaths globally. Despite a rise in its occurrence, there is a significant deficit in effective treatment options. This leads to a bleak outlook for those diagnosed with this cancer type, with roughly 70% succumbing to the disease within a year following diagnosis. Therefore, understanding the development and diverse nature of pancreatic cancer at the cellular level is vital for pinpointing potential treatment targets. Liquid biopsy is gaining prominence as a non-invasive technique for detecting and monitoring circulating tumor DNA (ctDNA) in the bloodstream, providing valuable information on cancer growth patterns and intra-tumor heterogeneity, which can cause resistance to cancer drugs. A challenge with liquid biopsy, however, is the limited sensitivity of current methods for detecting tumors that do not release substantial DNA into the blood, such as pancreatic cancer. Now, researchers have developed a novel ctDNA-based approach that identifies subclonal copy number alterations in the evolution of pancreatic cancer. This new method, known as ACT-Discover – Aneuploidy in Circulating Tumor DNA (ctDNA), has demonstrated 30% greater sensitivity than conventional methods in patients with advanced pancreatic cancer.

Researchers at the Vall d’Hebron Institute of Oncology’s (VHIO, Barcelona, Spain) incorporated a comprehensive analysis of blood samples, including both germinal DNA and tumor DNA data to develop the innovative liquid biopsy technique. This method can identify ctDNA in an additional 30% of patients with advanced pancreatic cancer, compared to existing techniques. With a focus on improving pancreatic cancer detection, the researchers aimed to design a more sensitive liquid biopsy approach to detect ctDNA in blood and assess genomic and molecular attributes of tumors as they evolve. In a study of 24 patients with end-stage pancreatic cancer, the ACT-Discover technique was employed to track the disease's progression. The results demonstrated that the comprehensive new liquid biopsy method can identify ctDNA in an additional 30% of patients when compared to traditional liquid biopsy methods.

“Being able to access genetic and genomic insights in a non-invasive way, and to do so in series throughout the course of disease, provides valuable information to deliver on the true promise of precision cancer medicine in an increasing number of tumor types, including pancreatic cancer,” said co-corresponding author Manuel Hidalgo.

“Our results underpin the importance of sampling approaches over time and across space in cancer as well as ctDNA-based approaches in tracking tumor evolution. Findings also highlight intra-tumor heterogeneity within advanced pancreatic cancer,” said Rodrigo A. Toledo, co-corresponding author of this present study.

Related Links:
VHIO 

Flocked Swab
HydraFlock and PurFlock Ultra
Gold Supplier
Procalcitonin Test
LIAISON B•R•A•H•M•S PCT II GEN
New
Herpes Simplex Virus Test
S3002E HSV-2
New
Automatic Biochemistry Analyzer
TC6010L

Print article

Channels

Clinical Chem.

view channel
Image: Electrochemical cells etched by laser on wooden tongue depressor measure glucose and nitrite in saliva (Photo courtesy of Analytical Chemistry)

Biosensor-Fabricated Wooden Tongue Depressor Measures Glucose and Nitrite in Saliva

Physicians often use tongue depressors to examine a patient's mouth and throat. However, it is hard to imagine that this simple wooden tool could actively assess a patient's health. This idea has led to... Read more

Hematology

view channel
Image: The Atellica HEMA 570 and 580 hematology analyzers remove workflow barriers (Photo courtesy of Siemens)

Next-Gen Hematology Analyzers Eliminate Workflow Roadblocks and Achieve Fast Throughput

Hematology testing is a critical aspect of patient care, utilized to establish a patient's health baseline, track treatment progress, or guide timely modifications to care. However, increasing constraints... Read more

Immunology

view channel
Image: Newly observed anti-FSP antibodies have also been found to predict immune-related adverse events (Photo courtesy of Calviri)

First Blood-Based Biomarkers Test to Predict Treatment Response in Cancer Patients

Every year worldwide, lung cancer afflicts over two million individuals and almost the same number of people succumb to the disease. This malignancy leads the charts in cancer-related mortalities, with... Read more

Microbiology

view channel
Image: The rapid MTB strip test for tuberculosis can identify TB patients within two hours (Photo courtesy of Chulalongkorn University)

Rapid MTB Strip Test Detects Tuberculosis in Less Than an Hour without Special Tools

Tuberculosis (TB), a highly infectious disease, continues to pose significant challenges to public health worldwide. TB is caused by a bacterium known as "Mycobacterium tuberculosis," spreading through... Read more

Pathology

view channel
Image: The UNIQO 160 (CE-IVDR) advances diagnostic analysis for autoimmune diseases (Photo courtesy of EUROIMMUN)

Novel Automated IIFT System Enables Cutting-Edge Diagnostic Analysis

A newly-launched automated indirect immunofluorescence test (IIFT) system for autoimmune disease diagnostics offers an all-in-one solution to enhance the efficiency of the complete IIFT process, comprising... Read more

Technology

view channel
Electronic biosensor uses DNA aptamers for detecting biomarkers in whole blood samples (Photo courtesy of Freepik)

Electronic Biosensor Detects Biomarkers in Whole Blood Samples without Addition of Reagents

The absence of robust, reliable, and user-friendly bioanalytical tools for early and timely diagnosis of cardiovascular diseases, particularly sudden cardiac arrest, leads to preventable deaths and imposes... Read more

Industry

view channel
Image: The global hemostasis diagnostics market is expected to reach USD 3.95 billion by 2025 (Photo courtesy of Freepik)

Global Hemostasis Diagnostics Market Driven by Increase in Invasive Surgical Procedures

Injury or surgery naturally creates bleeding in living beings, which must be stopped to prevent excessive blood loss. The human body implements a protective mechanism known as hemostasis to stop excessive bleeding.... Read more
Copyright © 2000-2023 Globetech Media. All rights reserved.