We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




First-Ever Mpox Rapid Test Can Be Adapted for Other Emerging Diseases

By LabMedica International staff writers
Posted on 20 Apr 2023
Print article
Image: Images showing the nano-assembly mpox rapid test before (a) and after (e) the addition of mpox DNA (Photo courtesy of Penn State)
Image: Images showing the nano-assembly mpox rapid test before (a) and after (e) the addition of mpox DNA (Photo courtesy of Penn State)

Monkeypox, or Mpox virus, is mainly transmitted through close physical contact and causes a disease with symptoms similar to smallpox, albeit less severe. Recent research indicates that individuals can transmit the Mpox virus to others even before symptoms manifest, making early detection through testing essential for mitigating the spread. Current therapeutics and two-dose vaccines are inadequate for preventing transmission, leaving rapid diagnosis as the sole viable option for disease containment. However, polymerase chain reaction (PCR), the only FDA-approved test for Mpox, has several limitations, such as complex sample collection, transportation, and limited access to advanced instrumental facilities. Presently, tests necessitate healthcare providers to swab lesions and send samples to labs for analysis, a process that can take days.

Now, a team of researchers led by Penn State (University Park, PA, USA) has developed the first rapid test for Mpox, based on an innovative technology that may also be adaptable for other emerging diseases. The selective molecular sensor can detect the virus within minutes without relying on high-end instrumental techniques like PCR. The method employs nanomaterials heterostructures, consisting of zero-dimensional spherical gold nanoparticles and two-dimensional hafnium disulfide nanoplatelets, to create a platform technology capable of detecting trace amounts of genetic material in biological samples.

While nanoparticles have previously been utilized to observe changes in biological systems, this is the first instance of using two nanoscale objects in different dimensions to identify an emerging pathogen. The rapid test, which requires only a small lesion swab sample and a brief waiting period for results, could significantly reduce the virus's transmission rate. The researchers are currently testing the system against other pathogens to verify its wide-ranging applicability for viral detection. Once the test is clinically validated, they will seek commercial partners to collaborate on bringing the technology to market.

“This is a major breakthrough in terms of how we manage the virus, as it is the first rapid test for mpox,” said Dipanjan Pan, Penn State’s Dorothy Foehr Huck & J. Lloyd Huck Chair Professor in Nanomedicine, who led the study. “But it’s also important to note that this new technology can help us to prepare for the next epidemic or even pandemic. With slight modification of the molecules used for targeting the genetic sequences, we will be able to specifically detect other viruses, bacteria or fungi using the same method.”

Related Links:
Penn State 

Gold Member
Veterinary Hematology Analyzer
Exigo H400
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Ultra-Low Temperature Freezer
iUF118-GX
New
Hemoglobin/Haptoglobin Assay
IDK Hemoglobin/Haptoglobin Complex ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: The GlycoLocate platform uses multi-omics and advanced computational biology algorithms to diagnose early-stage cancers (Photo courtesy of AOA Dx)

AI-Powered Blood Test Accurately Detects Ovarian Cancer

Ovarian cancer ranks as the fifth leading cause of cancer-related deaths in women, largely due to late-stage diagnoses. Although over 90% of women exhibit symptoms in Stage I, only 20% are diagnosed in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: The new algorithms can help predict which patients have undiagnosed cancer (Photo courtesy of Adobe Stock)

Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer

Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.