We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




New Blood Test Identifies Type 2 Diabetes Risk by Analyzing DNA Changes

By LabMedica International staff writers
Posted on 07 Apr 2023

Type 2 diabetes is a medical condition that arises when the insulin produced by the pancreas fails to function properly or is inadequate. More...

This can lead to increased levels of blood sugar and subsequently, a host of health complications such as heart diseases, stroke, nerve damage, and foot problems. At present, risk assessment tools for type 2 diabetes rely on factors like age, gender, body mass index (BMI), and family history of the disease. Now, a new study indicates that by analyzing changes in the DNA present in blood samples, it is possible to significantly improve the ability to predict the likelihood of an individual developing type 2 diabetes within a decade.

Methylation is a chemical process in the body in which a small molecule called a methyl group is added to DNA. Scientists at the University of Edinburgh (Edinburgh, Scotland, UK) examined how these alterations, in combination with other risk factors, could predict the probability of developing type 2 diabetes in almost 15,000 individuals long before any symptoms appear. The researchers found that incorporating DNA methylation data along with conventional risk factors improved the prediction accuracy.

To evaluate the predictive performance, the scientists adopted a hypothetical screening scenario involving 10,000 people where one-third of them developed type 2 diabetes over ten years. The model that incorporated DNA methylation accurately classified an additional 449 individuals compared to using traditional risk factors alone. The addition or removal of these methyl groups can impact the manner in which specific molecules act in the human body. These methylation patterns can be used to monitor the aging process and disease development. These findings could potentially enable the implementation of preventative measures earlier, thus lessening the health and economic burden of type 2 diabetes.

“Similar approaches could be taken for other common diseases to generate broad health predictors from a single blood or saliva sample,” said Professor Riccardo Marioni, Principal Investigator for the study, Centre for Genomic and Experimental Medicine at the University of Edinburgh. “We are incredibly grateful for our study volunteers who make this research possible – the more people that join our study, the more precisely we can identify signals that will help delay or reduce the onset of diseases as we age.”

Related Links:
University of Edinburgh


Gold Member
Cardiovascular Risk Test
Metabolic Syndrome Array I & II
Collection and Transport System
PurSafe Plus®
New
CBM Analyzer
Complete Blood Morphology (CBM) Analyzer
Sample Transportation System
Tempus1800 Necto
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New evidence shows viscoelastic testing can improve assessment of blood clotting during postpartum hemorrhage (Photo courtesy of 123RF)

Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage

Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more

Immunology

view channel
Image: When assessing the same lung biopsy sample, research shows that only 18% of pathologists will agree on a TCMR diagnosis (Photo courtesy of Thermo Fisher)

Molecular Microscope Diagnostic System Assesses Lung Transplant Rejection

Lung transplant recipients face a significant risk of rejection and often require routine biopsies to monitor graft health, yet assessing the same biopsy sample can be highly inconsistent among pathologists.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.