Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Pocket-Sized Devices Enable Real-Time DNA and RNA Sequencing Anywhere

By LabMedica International staff writers
Posted on 05 Jul 2022
Print article
Image: Nanopore devices offer direct analysis of DNA/RNA in-real time (Photo courtesy of Oxford Nanopore)
Image: Nanopore devices offer direct analysis of DNA/RNA in-real time (Photo courtesy of Oxford Nanopore)

DNA and RNA sequencing can answer a range of biological questions, providing information on pathogen identity, genetic disease risk or how an organism has evolved. Now, a new generation of sensing technology uses nanopores - nano-scale holes - embedded in high-tech electronics, to perform precise molecular analyses in fully scalable formats from pocket to population-scale devices. The advantages of real-time sequencing include rapid access to time critical information (e.g. pathogen identification), the generation of early sample insights and more control over the sequencing experiment.

The new generation of DNA/RNA sequencing technology developed by Oxford Nanopore Technologies (Oxford, UK) is the only sequencing technology that offers real-time analysis (for rapid insights), in fully scalable formats from pocket to population scale, and can analyze native DNA or RNA and sequence any length of fragment to achieve short to ultra-long read lengths. All Oxford Nanopore sequencing devices use flow cells which contain an array of tiny holes - nanopores - embedded in an electro-resistant membrane. Each nanopore corresponds to its own electrode connected to a channel and sensor chip, which measures the electric current that flows through the nanopore. When a molecule passes through a nanopore, the current is disrupted to produce a characteristic ‘squiggle’. The squiggle is then decoded using basecalling algorithms to determine the DNA or RNA sequence in real time.

Oxford Nanopore has opened up RNA/DNA sequencing to anyone, anywhere in small formats such as Flongle which addresses the need for on-demand, rapid, smaller tests or experiments, and can be used in labs or in the field. Similarly, the pocket-sized MinION is a powerful and portable sequencing device that can deliver high volumes of long read sequence data. On the other hand, the benchtop GridION Mk1 can run up to five MinION Flow Cells at a time, on-demand, for larger genomics projects. In addition, PromethION is the largest format for nanopore sequencing, designed to offer on-demand use of up to 48 Flow Cells – capable of delivering more than 10 Tb of sequence data in a full run, and is now being used in population-scale sequencing projects.

The company has also launched PromethION 2 (P2) solo, a first-in-class handheld, low-cost, ultra-high-throughput DNA sequencing device. Designed to deliver high-output, low-cost sequencing in a palm-sized device and make high-throughput sequencing more accessible, the P2 supports users wishing to discover more, rich biological insights about human disease, including cancer and ultra-long plant and animal genomes or larger transcriptome/metagenomic analyses. The new device can produce as much as 580 Gb sequence data in one run.

Related Links:
Oxford Nanopore Technologies 

Gold Member
Troponin T QC
Troponin T Quality Control
Verification Panels for Assay Development & QC
Seroconversion Panels
New
C-Reactive Protein Assay
OneStep C-Reactive Protein (CRP) RapiCard InstaTest
New
Typhoid Rapid Test
OnSite Typhoid IgG/IgM Combo Rapid Test

Print article

Channels

Clinical Chemistry

view channel
Image: The GlycoLocate platform uses multi-omics and advanced computational biology algorithms to diagnose early-stage cancers (Photo courtesy of AOA Dx)

AI-Powered Blood Test Accurately Detects Ovarian Cancer

Ovarian cancer ranks as the fifth leading cause of cancer-related deaths in women, largely due to late-stage diagnoses. Although over 90% of women exhibit symptoms in Stage I, only 20% are diagnosed in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: The new algorithms can help predict which patients have undiagnosed cancer (Photo courtesy of Adobe Stock)

Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer

Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.