We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBE SCIENTIFIC, LLC

QIAGEN

Qiagen is a provider of sample and assay technologies for molecular diagnostics and applied testing, including comple... read more Featured Products: More products

Download Mobile App




Liquid Biopsies Detect Pediatric Bone Tumors Based on Epigenetic Profiles

By LabMedica International staff writers
Posted on 17 Jun 2021
Sequencing of cell-free DNA (cfDNA) in the blood of cancer patients (liquid biopsy) provides attractive opportunities for early diagnosis, assessment of treatment response, and minimally invasive disease monitoring. More...
As a consequence, cfDNA analysis holds great promise for precision oncology and personalized therapies, and is currently evaluated in a broad range of clinical studies.

Ewing sarcoma (EwS) constitutes an ideal model cancer for establishing and validating fragment-based liquid biopsy analysis for pediatric tumors. EwS has a unique epigenetic signature with established clinical associations, which constitutes a potential epigenetic marker for early diagnosis and tumor classification based on cfDNA. Moreover, EwS tumors have well-established genetic aberrations that can be used for comparison.

An international team led by scientists at the St. Anna Children’s Cancer Research Institute (Vienna, Austria) and their colleagues included 200 plasma samples from 95 patients with EwS and 41 plasma samples from 31 patients with other types of sarcoma: EwS-like sarcoma (three patients, two of which were positive for the CIC-DUX4 fusion gene), osteosarcoma (eight patients), rhabdomyosarcoma (12 patients), synovial sarcoma (three patients), and other types of sarcoma (five patients). Plasma samples from 22 healthy individuals (24–50 years old) were used as controls.

cfDNA was isolated using the QIAsymphony Circulating DNA Kit with the QIAsymphony SP instrument or the QIAampMinElute cfDNA Kit (Qiagen, Hilden, Germany). Whole-genome sequencing libraries were generated from 10 ng of cfDNA. Final libraries were eluted in 20 µl nuclease-free water, quantified with the Qubit dsDNA HS Assay Kit (Thermo Fisher Scientific, Waltham, MA, USA). Patient-specific assays for fusion gene detection and quantification were designed following the guidelines from the Bio-Rad ddPCR (Bio-Rad, Hercules, CA, USA).

The team reported that after confirming that they could detect tumor-derived DNA in their cell-free DNA samples, they noted that the tumor-derived DNA tended to be shorter than the cell-free DNA found among healthy controls. These fragments were often about 167 base pairs in size, which corresponds to the length of DNA that wraps around a nucleosome plus linker DNA. These shorter tumor-derived DNA fragments were additionally found among patients for whom there were no detectable genetic changes. This suggested that fragmentation patterns could be used to identify tumor-derived DNA independent of genetic alterations.

The scientists further developed a tool they dubbed LIQUORICE, for liquid biopsy regions-of-interest coverage estimation, that overlays these genome-wide cell-free DNA fragment profiles atop a predetermined set of genomic regions where epigenetic changes often occur in the cancer type. In that way, it develops a consensus signature of fragment coverage in those regions. They additionally developed machine-learning classifiers to not only distinguish individuals with cancer from controls but also between different types of pediatric sarcoma, without relying on the recurrent genetic changes. When they tested their classifiers, they found they were highly sensitive.

The authors concluded that their study demonstrated how deep whole-genome sequencing of cfDNA enables comprehensive detection, classification, and monitoring of pediatric tumors based on their genetic and epigenetic profiles, thus providing a clinically relevant method for liquid biopsy analysis in cancers with few or no genetic alterations. The study was published on May 28,2021 in the journal Nature Communications.

Related Links:
St. Anna Children’s Cancer Research Institute
Qiagen
Thermo Fisher Scientific
Bio-Rad



Gold Member
Pharmacogenetics Panel
VeriDose Core Panel v2.0
3-Part Differential Hematology Analyzer
Swelab Alfa Plus Sampler
New
Vasculitis Diagnostic Test
AESKULISA Vasculitis-Screen
New
Respiratory Syncytial Virus Test
OSOM® RSV Test
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: The tip optofluidic immunoassay platform enables rapid, multiplexed antibody profiling using only 1 μL of fingertip blood (Photo courtesy of hLife, DOI:10.1016/j.hlife.2025.04.005)

POC Diagnostic Platform Performs Immune Analysis Using One Drop of Fingertip Blood

As new COVID-19 variants continue to emerge and individuals accumulate complex histories of vaccination and infection, there is an urgent need for diagnostic tools that can quickly and accurately assess... Read more

Pathology

view channel
Image: Microscopy image of invasive breast cancer cells degrading their underlying extracellular matrix (Photo courtesy of University of Turku)

Visualization Tool Illuminates Breast Cancer Cell Migration to Suggest New Treatment Avenues

Patients with breast cancer who progress from ductal carcinoma in situ (DCIS) to invasive ductal carcinoma (IDC) face a significantly worse prognosis, as metastatic disease remains incurable.... Read more

Technology

view channel
Image: The machine learning-based method delivers near-perfect survival estimates for PAC patients (Photo courtesy of Shutterstock)

AI Method Predicts Overall Survival Rate of Prostate Cancer Patients

Prostate adenocarcinoma (PAC) accounts for 99% of prostate cancer diagnoses and is the second most common cancer in men globally after skin cancer. With more than 3.3 million men in the United States diagnosed... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.